mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
the document classifier is now stateless
This commit is contained in:
parent
3e50e51b8a
commit
05f20c19c3
@ -34,7 +34,6 @@ class DocumentClassifier(object):
|
||||
self.tags_classifier = None
|
||||
self.correspondent_classifier = None
|
||||
self.document_type_classifier = None
|
||||
self.X = None
|
||||
|
||||
def reload(self):
|
||||
if os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
||||
@ -167,14 +166,10 @@ class DocumentClassifier(object):
|
||||
"classifier."
|
||||
)
|
||||
|
||||
def update(self, document):
|
||||
self.X = self.data_vectorizer.transform(
|
||||
[preprocess_content(document.content)]
|
||||
)
|
||||
|
||||
def predict_correspondent(self):
|
||||
def predict_correspondent(self, content):
|
||||
if self.correspondent_classifier:
|
||||
y = self.correspondent_classifier.predict(self.X)
|
||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||
y = self.correspondent_classifier.predict(X)
|
||||
correspondent_id = self.correspondent_binarizer.inverse_transform(y)[0]
|
||||
if correspondent_id != -1:
|
||||
return correspondent_id
|
||||
@ -183,9 +178,10 @@ class DocumentClassifier(object):
|
||||
else:
|
||||
return None
|
||||
|
||||
def predict_document_type(self):
|
||||
def predict_document_type(self, content):
|
||||
if self.document_type_classifier:
|
||||
y = self.document_type_classifier.predict(self.X)
|
||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||
y = self.document_type_classifier.predict(X)
|
||||
document_type_id = self.document_type_binarizer.inverse_transform(y)[0]
|
||||
if document_type_id != -1:
|
||||
return document_type_id
|
||||
@ -194,9 +190,10 @@ class DocumentClassifier(object):
|
||||
else:
|
||||
return None
|
||||
|
||||
def predict_tags(self):
|
||||
def predict_tags(self, content):
|
||||
if self.tags_classifier:
|
||||
y = self.tags_classifier.predict(self.X)
|
||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||
y = self.tags_classifier.predict(X)
|
||||
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
|
||||
return tags_ids
|
||||
else:
|
||||
|
@ -182,7 +182,6 @@ class Consumer:
|
||||
|
||||
try:
|
||||
self.classifier.reload()
|
||||
self.classifier.update(document)
|
||||
classifier = self.classifier
|
||||
except FileNotFoundError:
|
||||
logging.getLogger(__name__).warning("Cannot classify documents, "
|
||||
|
@ -84,9 +84,6 @@ class Command(Renderable, BaseCommand):
|
||||
"Processing document {}".format(document.title)
|
||||
)
|
||||
|
||||
if classifier:
|
||||
classifier.update(document)
|
||||
|
||||
if options['correspondent']:
|
||||
set_correspondent(
|
||||
sender=None,
|
||||
|
@ -7,7 +7,7 @@ from documents.models import MatchingModel, Correspondent, DocumentType, Tag
|
||||
|
||||
def match_correspondents(document_content, classifier):
|
||||
correspondents = Correspondent.objects.all()
|
||||
predicted_correspondent_id = classifier.predict_correspondent() if classifier else None
|
||||
predicted_correspondent_id = classifier.predict_correspondent(document_content) if classifier else None
|
||||
|
||||
matched_correspondents = [o for o in correspondents if matches(o, document_content) or o.id == predicted_correspondent_id]
|
||||
return matched_correspondents
|
||||
@ -15,7 +15,7 @@ def match_correspondents(document_content, classifier):
|
||||
|
||||
def match_document_types(document_content, classifier):
|
||||
document_types = DocumentType.objects.all()
|
||||
predicted_document_type_id = classifier.predict_document_type() if classifier else None
|
||||
predicted_document_type_id = classifier.predict_document_type(document_content) if classifier else None
|
||||
|
||||
matched_document_types = [o for o in document_types if matches(o, document_content) or o.id == predicted_document_type_id]
|
||||
return matched_document_types
|
||||
@ -23,7 +23,7 @@ def match_document_types(document_content, classifier):
|
||||
|
||||
def match_tags(document_content, classifier):
|
||||
objects = Tag.objects.all()
|
||||
predicted_tag_ids = classifier.predict_tags() if classifier else []
|
||||
predicted_tag_ids = classifier.predict_tags(document_content) if classifier else []
|
||||
|
||||
matched_tags = [o for o in objects if matches(o, document_content) or o.id in predicted_tag_ids]
|
||||
return matched_tags
|
||||
|
Loading…
x
Reference in New Issue
Block a user