mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
updated the classifier. Its now much faster and does not retrain when data hasnt changed.
This commit is contained in:
parent
9fa5eac9b9
commit
296c113b16
@ -1,61 +1,74 @@
|
|||||||
|
import hashlib
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
|
||||||
from sklearn.feature_extraction.text import CountVectorizer
|
from sklearn.feature_extraction.text import CountVectorizer
|
||||||
from sklearn.neural_network import MLPClassifier
|
from sklearn.neural_network import MLPClassifier
|
||||||
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
|
from sklearn.preprocessing import MultiLabelBinarizer
|
||||||
|
|
||||||
from documents.models import Document, MatchingModel
|
from documents.models import Document, MatchingModel
|
||||||
from paperless import settings
|
from paperless import settings
|
||||||
|
|
||||||
|
|
||||||
|
class IncompatibleClassifierVersionError(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def preprocess_content(content):
|
def preprocess_content(content):
|
||||||
content = content.lower()
|
content = content.lower().strip()
|
||||||
content = content.strip()
|
content = re.sub(r"\s+", " ", content)
|
||||||
content = content.replace("\n", " ")
|
|
||||||
content = content.replace("\r", " ")
|
|
||||||
while content.find(" ") > -1:
|
|
||||||
content = content.replace(" ", " ")
|
|
||||||
return content
|
return content
|
||||||
|
|
||||||
|
|
||||||
class DocumentClassifier(object):
|
class DocumentClassifier(object):
|
||||||
|
|
||||||
|
FORMAT_VERSION = 5
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
# mtime of the model file on disk. used to prevent reloading when nothing has changed.
|
||||||
self.classifier_version = 0
|
self.classifier_version = 0
|
||||||
|
|
||||||
|
# hash of the training data. used to prevent re-training when the training data has not changed.
|
||||||
|
self.data_hash = None
|
||||||
|
|
||||||
self.data_vectorizer = None
|
self.data_vectorizer = None
|
||||||
|
|
||||||
self.tags_binarizer = None
|
self.tags_binarizer = None
|
||||||
self.correspondent_binarizer = None
|
|
||||||
self.document_type_binarizer = None
|
|
||||||
|
|
||||||
self.tags_classifier = None
|
self.tags_classifier = None
|
||||||
self.correspondent_classifier = None
|
self.correspondent_classifier = None
|
||||||
self.document_type_classifier = None
|
self.document_type_classifier = None
|
||||||
|
|
||||||
def reload(self):
|
def reload(self):
|
||||||
if os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
if os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
||||||
logging.getLogger(__name__).info("Reloading classifier models")
|
|
||||||
with open(settings.MODEL_FILE, "rb") as f:
|
with open(settings.MODEL_FILE, "rb") as f:
|
||||||
self.data_vectorizer = pickle.load(f)
|
schema_version = pickle.load(f)
|
||||||
self.tags_binarizer = pickle.load(f)
|
|
||||||
self.correspondent_binarizer = pickle.load(f)
|
|
||||||
self.document_type_binarizer = pickle.load(f)
|
|
||||||
|
|
||||||
self.tags_classifier = pickle.load(f)
|
if schema_version != self.FORMAT_VERSION:
|
||||||
self.correspondent_classifier = pickle.load(f)
|
raise IncompatibleClassifierVersionError("Cannor load classifier, incompatible versions.")
|
||||||
self.document_type_classifier = pickle.load(f)
|
else:
|
||||||
|
if self.classifier_version > 0:
|
||||||
|
logger.info("Classifier updated on disk, reloading classifier models")
|
||||||
|
self.data_hash = pickle.load(f)
|
||||||
|
self.data_vectorizer = pickle.load(f)
|
||||||
|
self.tags_binarizer = pickle.load(f)
|
||||||
|
|
||||||
|
self.tags_classifier = pickle.load(f)
|
||||||
|
self.correspondent_classifier = pickle.load(f)
|
||||||
|
self.document_type_classifier = pickle.load(f)
|
||||||
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
|
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
|
||||||
|
|
||||||
def save_classifier(self):
|
def save_classifier(self):
|
||||||
with open(settings.MODEL_FILE, "wb") as f:
|
with open(settings.MODEL_FILE, "wb") as f:
|
||||||
|
pickle.dump(self.FORMAT_VERSION, f) # Version
|
||||||
|
pickle.dump(self.data_hash, f)
|
||||||
pickle.dump(self.data_vectorizer, f)
|
pickle.dump(self.data_vectorizer, f)
|
||||||
|
|
||||||
pickle.dump(self.tags_binarizer, f)
|
pickle.dump(self.tags_binarizer, f)
|
||||||
pickle.dump(self.correspondent_binarizer, f)
|
|
||||||
pickle.dump(self.document_type_binarizer, f)
|
|
||||||
|
|
||||||
pickle.dump(self.tags_classifier, f)
|
pickle.dump(self.tags_classifier, f)
|
||||||
pickle.dump(self.correspondent_classifier, f)
|
pickle.dump(self.correspondent_classifier, f)
|
||||||
@ -68,109 +81,121 @@ class DocumentClassifier(object):
|
|||||||
labels_document_type = list()
|
labels_document_type = list()
|
||||||
|
|
||||||
# Step 1: Extract and preprocess training data from the database.
|
# Step 1: Extract and preprocess training data from the database.
|
||||||
logging.getLogger(__name__).info("Gathering data from database...")
|
logging.getLogger(__name__).debug("Gathering data from database...")
|
||||||
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
|
m = hashlib.sha1()
|
||||||
data.append(preprocess_content(doc.content))
|
for doc in Document.objects.order_by('pk').exclude(tags__is_inbox_tag=True):
|
||||||
|
preprocessed_content = preprocess_content(doc.content)
|
||||||
|
m.update(preprocessed_content.encode('utf-8'))
|
||||||
|
data.append(preprocessed_content)
|
||||||
|
|
||||||
y = -1
|
y = -1
|
||||||
if doc.document_type:
|
if doc.document_type:
|
||||||
if doc.document_type.matching_algorithm == MatchingModel.MATCH_AUTO:
|
if doc.document_type.matching_algorithm == MatchingModel.MATCH_AUTO:
|
||||||
y = doc.document_type.pk
|
y = doc.document_type.pk
|
||||||
|
m.update(y.to_bytes(4, 'little', signed=True))
|
||||||
labels_document_type.append(y)
|
labels_document_type.append(y)
|
||||||
|
|
||||||
y = -1
|
y = -1
|
||||||
if doc.correspondent:
|
if doc.correspondent:
|
||||||
if doc.correspondent.matching_algorithm == MatchingModel.MATCH_AUTO:
|
if doc.correspondent.matching_algorithm == MatchingModel.MATCH_AUTO:
|
||||||
y = doc.correspondent.pk
|
y = doc.correspondent.pk
|
||||||
|
m.update(y.to_bytes(4, 'little', signed=True))
|
||||||
labels_correspondent.append(y)
|
labels_correspondent.append(y)
|
||||||
|
|
||||||
tags = [tag.pk for tag in doc.tags.filter(
|
tags = [tag.pk for tag in doc.tags.filter(
|
||||||
matching_algorithm=MatchingModel.MATCH_AUTO
|
matching_algorithm=MatchingModel.MATCH_AUTO
|
||||||
)]
|
)]
|
||||||
|
m.update(bytearray(tags))
|
||||||
labels_tags.append(tags)
|
labels_tags.append(tags)
|
||||||
|
|
||||||
if not data:
|
if not data:
|
||||||
raise ValueError("No training data available.")
|
raise ValueError("No training data available.")
|
||||||
|
|
||||||
|
new_data_hash = m.digest()
|
||||||
|
|
||||||
|
if self.data_hash and new_data_hash == self.data_hash:
|
||||||
|
return False
|
||||||
|
|
||||||
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
|
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
|
||||||
logging.getLogger(__name__).info(
|
|
||||||
|
num_tags = len(labels_tags_unique)
|
||||||
|
# substract 1 since -1 (null) is also part of the classes.
|
||||||
|
num_correspondents = len(labels_correspondent) - 1
|
||||||
|
num_document_types = len(labels_document_type) - 1
|
||||||
|
|
||||||
|
logging.getLogger(__name__).debug(
|
||||||
"{} documents, {} tag(s), {} correspondent(s), "
|
"{} documents, {} tag(s), {} correspondent(s), "
|
||||||
"{} document type(s).".format(
|
"{} document type(s).".format(
|
||||||
len(data),
|
len(data),
|
||||||
len(labels_tags_unique),
|
num_tags,
|
||||||
len(set(labels_correspondent)),
|
num_correspondents,
|
||||||
len(set(labels_document_type))
|
num_document_types
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Step 2: vectorize data
|
# Step 2: vectorize data
|
||||||
logging.getLogger(__name__).info("Vectorizing data...")
|
logging.getLogger(__name__).debug("Vectorizing data...")
|
||||||
self.data_vectorizer = CountVectorizer(
|
self.data_vectorizer = CountVectorizer(
|
||||||
analyzer="char",
|
analyzer="word",
|
||||||
ngram_range=(3, 5),
|
ngram_range=(1,2),
|
||||||
min_df=0.1
|
min_df=0.01
|
||||||
)
|
)
|
||||||
data_vectorized = self.data_vectorizer.fit_transform(data)
|
data_vectorized = self.data_vectorizer.fit_transform(data)
|
||||||
|
|
||||||
self.tags_binarizer = MultiLabelBinarizer()
|
self.tags_binarizer = MultiLabelBinarizer()
|
||||||
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
|
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
|
||||||
|
|
||||||
self.correspondent_binarizer = LabelBinarizer()
|
|
||||||
labels_correspondent_vectorized = \
|
|
||||||
self.correspondent_binarizer.fit_transform(labels_correspondent)
|
|
||||||
|
|
||||||
self.document_type_binarizer = LabelBinarizer()
|
|
||||||
labels_document_type_vectorized = \
|
|
||||||
self.document_type_binarizer.fit_transform(labels_document_type)
|
|
||||||
|
|
||||||
# Step 3: train the classifiers
|
# Step 3: train the classifiers
|
||||||
if len(self.tags_binarizer.classes_) > 0:
|
if num_tags > 0:
|
||||||
logging.getLogger(__name__).info("Training tags classifier...")
|
logging.getLogger(__name__).debug("Training tags classifier...")
|
||||||
self.tags_classifier = MLPClassifier(verbose=True)
|
self.tags_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||||
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
||||||
else:
|
else:
|
||||||
self.tags_classifier = None
|
self.tags_classifier = None
|
||||||
logging.getLogger(__name__).info(
|
logging.getLogger(__name__).debug(
|
||||||
"There are no tags. Not training tags classifier."
|
"There are no tags. Not training tags classifier."
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(self.correspondent_binarizer.classes_) > 0:
|
if num_correspondents > 0:
|
||||||
logging.getLogger(__name__).info(
|
logging.getLogger(__name__).debug(
|
||||||
"Training correspondent classifier..."
|
"Training correspondent classifier..."
|
||||||
)
|
)
|
||||||
self.correspondent_classifier = MLPClassifier(verbose=True)
|
self.correspondent_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||||
self.correspondent_classifier.fit(
|
self.correspondent_classifier.fit(
|
||||||
data_vectorized,
|
data_vectorized,
|
||||||
labels_correspondent_vectorized
|
labels_correspondent
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
self.correspondent_classifier = None
|
self.correspondent_classifier = None
|
||||||
logging.getLogger(__name__).info(
|
logging.getLogger(__name__).debug(
|
||||||
"There are no correspondents. Not training correspondent "
|
"There are no correspondents. Not training correspondent "
|
||||||
"classifier."
|
"classifier."
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(self.document_type_binarizer.classes_) > 0:
|
if num_document_types > 0:
|
||||||
logging.getLogger(__name__).info(
|
logging.getLogger(__name__).debug(
|
||||||
"Training document type classifier..."
|
"Training document type classifier..."
|
||||||
)
|
)
|
||||||
self.document_type_classifier = MLPClassifier(verbose=True)
|
self.document_type_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||||
self.document_type_classifier.fit(
|
self.document_type_classifier.fit(
|
||||||
data_vectorized,
|
data_vectorized,
|
||||||
labels_document_type_vectorized
|
labels_document_type
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
self.document_type_classifier = None
|
self.document_type_classifier = None
|
||||||
logging.getLogger(__name__).info(
|
logging.getLogger(__name__).debug(
|
||||||
"There are no document types. Not training document type "
|
"There are no document types. Not training document type "
|
||||||
"classifier."
|
"classifier."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.data_hash = new_data_hash
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
def predict_correspondent(self, content):
|
def predict_correspondent(self, content):
|
||||||
if self.correspondent_classifier:
|
if self.correspondent_classifier:
|
||||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||||
y = self.correspondent_classifier.predict(X)
|
correspondent_id = self.correspondent_classifier.predict(X)
|
||||||
correspondent_id = self.correspondent_binarizer.inverse_transform(y)[0]
|
|
||||||
if correspondent_id != -1:
|
if correspondent_id != -1:
|
||||||
return correspondent_id
|
return correspondent_id
|
||||||
else:
|
else:
|
||||||
@ -181,8 +206,7 @@ class DocumentClassifier(object):
|
|||||||
def predict_document_type(self, content):
|
def predict_document_type(self, content):
|
||||||
if self.document_type_classifier:
|
if self.document_type_classifier:
|
||||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||||
y = self.document_type_classifier.predict(X)
|
document_type_id = self.document_type_classifier.predict(X)
|
||||||
document_type_id = self.document_type_binarizer.inverse_transform(y)[0]
|
|
||||||
if document_type_id != -1:
|
if document_type_id != -1:
|
||||||
return document_type_id
|
return document_type_id
|
||||||
else:
|
else:
|
||||||
|
@ -10,7 +10,7 @@ from django.db import transaction
|
|||||||
from django.utils import timezone
|
from django.utils import timezone
|
||||||
|
|
||||||
from paperless.db import GnuPG
|
from paperless.db import GnuPG
|
||||||
from .classifier import DocumentClassifier
|
from .classifier import DocumentClassifier, IncompatibleClassifierVersionError
|
||||||
from .models import Document, FileInfo
|
from .models import Document, FileInfo
|
||||||
from .parsers import ParseError, get_parser_class
|
from .parsers import ParseError, get_parser_class
|
||||||
from .signals import (
|
from .signals import (
|
||||||
@ -133,11 +133,8 @@ class Consumer:
|
|||||||
try:
|
try:
|
||||||
self.classifier.reload()
|
self.classifier.reload()
|
||||||
classifier = self.classifier
|
classifier = self.classifier
|
||||||
except FileNotFoundError:
|
except (FileNotFoundError, IncompatibleClassifierVersionError) as e:
|
||||||
self.log("warning", "Cannot classify documents, classifier "
|
logging.getLogger(__name__).warning("Cannot classify documents: {}.".format(e))
|
||||||
"model file was not found. Consider "
|
|
||||||
"running python manage.py "
|
|
||||||
"document_create_classifier.")
|
|
||||||
|
|
||||||
document_consumption_finished.send(
|
document_consumption_finished.send(
|
||||||
sender=self.__class__,
|
sender=self.__class__,
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
import logging
|
import logging
|
||||||
|
|
||||||
from django.core.management.base import BaseCommand
|
from django.core.management.base import BaseCommand
|
||||||
from documents.classifier import DocumentClassifier
|
from documents.classifier import DocumentClassifier, \
|
||||||
|
IncompatibleClassifierVersionError
|
||||||
from paperless import settings
|
from paperless import settings
|
||||||
from ...mixins import Renderable
|
from ...mixins import Renderable
|
||||||
|
|
||||||
@ -18,12 +19,25 @@ class Command(Renderable, BaseCommand):
|
|||||||
|
|
||||||
def handle(self, *args, **options):
|
def handle(self, *args, **options):
|
||||||
classifier = DocumentClassifier()
|
classifier = DocumentClassifier()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
classifier.train()
|
# load the classifier, since we might not have to train it again.
|
||||||
logging.getLogger(__name__).info(
|
classifier.reload()
|
||||||
"Saving models to {}...".format(settings.MODEL_FILE)
|
except (FileNotFoundError, IncompatibleClassifierVersionError):
|
||||||
)
|
# This is what we're going to fix here.
|
||||||
classifier.save_classifier()
|
pass
|
||||||
|
|
||||||
|
try:
|
||||||
|
if classifier.train():
|
||||||
|
logging.getLogger(__name__).info(
|
||||||
|
"Saving updated classifier model to {}...".format(settings.MODEL_FILE)
|
||||||
|
)
|
||||||
|
classifier.save_classifier()
|
||||||
|
else:
|
||||||
|
logging.getLogger(__name__).debug(
|
||||||
|
"Training data unchanged."
|
||||||
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.getLogger(__name__).error(
|
logging.getLogger(__name__).error(
|
||||||
"Classifier error: " + str(e)
|
"Classifier error: " + str(e)
|
||||||
|
@ -2,7 +2,8 @@ import logging
|
|||||||
|
|
||||||
from django.core.management.base import BaseCommand
|
from django.core.management.base import BaseCommand
|
||||||
|
|
||||||
from documents.classifier import DocumentClassifier
|
from documents.classifier import DocumentClassifier, \
|
||||||
|
IncompatibleClassifierVersionError
|
||||||
from documents.models import Document
|
from documents.models import Document
|
||||||
from ...mixins import Renderable
|
from ...mixins import Renderable
|
||||||
from ...signals.handlers import set_correspondent, set_document_type, set_tags
|
from ...signals.handlers import set_correspondent, set_document_type, set_tags
|
||||||
@ -72,10 +73,8 @@ class Command(Renderable, BaseCommand):
|
|||||||
classifier = DocumentClassifier()
|
classifier = DocumentClassifier()
|
||||||
try:
|
try:
|
||||||
classifier.reload()
|
classifier.reload()
|
||||||
except FileNotFoundError:
|
except (FileNotFoundError, IncompatibleClassifierVersionError) as e:
|
||||||
logging.getLogger(__name__).warning("Cannot classify documents, "
|
logging.getLogger(__name__).warning("Cannot classify documents: {}.".format(e))
|
||||||
"classifier model file was not "
|
|
||||||
"found.")
|
|
||||||
classifier = None
|
classifier = None
|
||||||
|
|
||||||
for document in documents:
|
for document in documents:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user