mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
updated the classifier. Its now much faster and does not retrain when data hasnt changed.
This commit is contained in:
parent
9fa5eac9b9
commit
296c113b16
@ -1,48 +1,61 @@
|
||||
import hashlib
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
import time
|
||||
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
|
||||
from documents.models import Document, MatchingModel
|
||||
from paperless import settings
|
||||
|
||||
|
||||
class IncompatibleClassifierVersionError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def preprocess_content(content):
|
||||
content = content.lower()
|
||||
content = content.strip()
|
||||
content = content.replace("\n", " ")
|
||||
content = content.replace("\r", " ")
|
||||
while content.find(" ") > -1:
|
||||
content = content.replace(" ", " ")
|
||||
content = content.lower().strip()
|
||||
content = re.sub(r"\s+", " ", content)
|
||||
return content
|
||||
|
||||
|
||||
class DocumentClassifier(object):
|
||||
|
||||
FORMAT_VERSION = 5
|
||||
|
||||
def __init__(self):
|
||||
# mtime of the model file on disk. used to prevent reloading when nothing has changed.
|
||||
self.classifier_version = 0
|
||||
|
||||
# hash of the training data. used to prevent re-training when the training data has not changed.
|
||||
self.data_hash = None
|
||||
|
||||
self.data_vectorizer = None
|
||||
|
||||
self.tags_binarizer = None
|
||||
self.correspondent_binarizer = None
|
||||
self.document_type_binarizer = None
|
||||
|
||||
self.tags_classifier = None
|
||||
self.correspondent_classifier = None
|
||||
self.document_type_classifier = None
|
||||
|
||||
def reload(self):
|
||||
if os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
||||
logging.getLogger(__name__).info("Reloading classifier models")
|
||||
with open(settings.MODEL_FILE, "rb") as f:
|
||||
schema_version = pickle.load(f)
|
||||
|
||||
if schema_version != self.FORMAT_VERSION:
|
||||
raise IncompatibleClassifierVersionError("Cannor load classifier, incompatible versions.")
|
||||
else:
|
||||
if self.classifier_version > 0:
|
||||
logger.info("Classifier updated on disk, reloading classifier models")
|
||||
self.data_hash = pickle.load(f)
|
||||
self.data_vectorizer = pickle.load(f)
|
||||
self.tags_binarizer = pickle.load(f)
|
||||
self.correspondent_binarizer = pickle.load(f)
|
||||
self.document_type_binarizer = pickle.load(f)
|
||||
|
||||
self.tags_classifier = pickle.load(f)
|
||||
self.correspondent_classifier = pickle.load(f)
|
||||
@ -51,11 +64,11 @@ class DocumentClassifier(object):
|
||||
|
||||
def save_classifier(self):
|
||||
with open(settings.MODEL_FILE, "wb") as f:
|
||||
pickle.dump(self.FORMAT_VERSION, f) # Version
|
||||
pickle.dump(self.data_hash, f)
|
||||
pickle.dump(self.data_vectorizer, f)
|
||||
|
||||
pickle.dump(self.tags_binarizer, f)
|
||||
pickle.dump(self.correspondent_binarizer, f)
|
||||
pickle.dump(self.document_type_binarizer, f)
|
||||
|
||||
pickle.dump(self.tags_classifier, f)
|
||||
pickle.dump(self.correspondent_classifier, f)
|
||||
@ -68,109 +81,121 @@ class DocumentClassifier(object):
|
||||
labels_document_type = list()
|
||||
|
||||
# Step 1: Extract and preprocess training data from the database.
|
||||
logging.getLogger(__name__).info("Gathering data from database...")
|
||||
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
|
||||
data.append(preprocess_content(doc.content))
|
||||
logging.getLogger(__name__).debug("Gathering data from database...")
|
||||
m = hashlib.sha1()
|
||||
for doc in Document.objects.order_by('pk').exclude(tags__is_inbox_tag=True):
|
||||
preprocessed_content = preprocess_content(doc.content)
|
||||
m.update(preprocessed_content.encode('utf-8'))
|
||||
data.append(preprocessed_content)
|
||||
|
||||
y = -1
|
||||
if doc.document_type:
|
||||
if doc.document_type.matching_algorithm == MatchingModel.MATCH_AUTO:
|
||||
y = doc.document_type.pk
|
||||
m.update(y.to_bytes(4, 'little', signed=True))
|
||||
labels_document_type.append(y)
|
||||
|
||||
y = -1
|
||||
if doc.correspondent:
|
||||
if doc.correspondent.matching_algorithm == MatchingModel.MATCH_AUTO:
|
||||
y = doc.correspondent.pk
|
||||
m.update(y.to_bytes(4, 'little', signed=True))
|
||||
labels_correspondent.append(y)
|
||||
|
||||
tags = [tag.pk for tag in doc.tags.filter(
|
||||
matching_algorithm=MatchingModel.MATCH_AUTO
|
||||
)]
|
||||
m.update(bytearray(tags))
|
||||
labels_tags.append(tags)
|
||||
|
||||
if not data:
|
||||
raise ValueError("No training data available.")
|
||||
|
||||
new_data_hash = m.digest()
|
||||
|
||||
if self.data_hash and new_data_hash == self.data_hash:
|
||||
return False
|
||||
|
||||
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
|
||||
logging.getLogger(__name__).info(
|
||||
|
||||
num_tags = len(labels_tags_unique)
|
||||
# substract 1 since -1 (null) is also part of the classes.
|
||||
num_correspondents = len(labels_correspondent) - 1
|
||||
num_document_types = len(labels_document_type) - 1
|
||||
|
||||
logging.getLogger(__name__).debug(
|
||||
"{} documents, {} tag(s), {} correspondent(s), "
|
||||
"{} document type(s).".format(
|
||||
len(data),
|
||||
len(labels_tags_unique),
|
||||
len(set(labels_correspondent)),
|
||||
len(set(labels_document_type))
|
||||
num_tags,
|
||||
num_correspondents,
|
||||
num_document_types
|
||||
)
|
||||
)
|
||||
|
||||
# Step 2: vectorize data
|
||||
logging.getLogger(__name__).info("Vectorizing data...")
|
||||
logging.getLogger(__name__).debug("Vectorizing data...")
|
||||
self.data_vectorizer = CountVectorizer(
|
||||
analyzer="char",
|
||||
ngram_range=(3, 5),
|
||||
min_df=0.1
|
||||
analyzer="word",
|
||||
ngram_range=(1,2),
|
||||
min_df=0.01
|
||||
)
|
||||
data_vectorized = self.data_vectorizer.fit_transform(data)
|
||||
|
||||
self.tags_binarizer = MultiLabelBinarizer()
|
||||
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
|
||||
|
||||
self.correspondent_binarizer = LabelBinarizer()
|
||||
labels_correspondent_vectorized = \
|
||||
self.correspondent_binarizer.fit_transform(labels_correspondent)
|
||||
|
||||
self.document_type_binarizer = LabelBinarizer()
|
||||
labels_document_type_vectorized = \
|
||||
self.document_type_binarizer.fit_transform(labels_document_type)
|
||||
|
||||
# Step 3: train the classifiers
|
||||
if len(self.tags_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info("Training tags classifier...")
|
||||
self.tags_classifier = MLPClassifier(verbose=True)
|
||||
if num_tags > 0:
|
||||
logging.getLogger(__name__).debug("Training tags classifier...")
|
||||
self.tags_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
||||
else:
|
||||
self.tags_classifier = None
|
||||
logging.getLogger(__name__).info(
|
||||
logging.getLogger(__name__).debug(
|
||||
"There are no tags. Not training tags classifier."
|
||||
)
|
||||
|
||||
if len(self.correspondent_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info(
|
||||
if num_correspondents > 0:
|
||||
logging.getLogger(__name__).debug(
|
||||
"Training correspondent classifier..."
|
||||
)
|
||||
self.correspondent_classifier = MLPClassifier(verbose=True)
|
||||
self.correspondent_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||
self.correspondent_classifier.fit(
|
||||
data_vectorized,
|
||||
labels_correspondent_vectorized
|
||||
labels_correspondent
|
||||
)
|
||||
else:
|
||||
self.correspondent_classifier = None
|
||||
logging.getLogger(__name__).info(
|
||||
logging.getLogger(__name__).debug(
|
||||
"There are no correspondents. Not training correspondent "
|
||||
"classifier."
|
||||
)
|
||||
|
||||
if len(self.document_type_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info(
|
||||
if num_document_types > 0:
|
||||
logging.getLogger(__name__).debug(
|
||||
"Training document type classifier..."
|
||||
)
|
||||
self.document_type_classifier = MLPClassifier(verbose=True)
|
||||
self.document_type_classifier = MLPClassifier(verbose=True, tol=0.01)
|
||||
self.document_type_classifier.fit(
|
||||
data_vectorized,
|
||||
labels_document_type_vectorized
|
||||
labels_document_type
|
||||
)
|
||||
else:
|
||||
self.document_type_classifier = None
|
||||
logging.getLogger(__name__).info(
|
||||
logging.getLogger(__name__).debug(
|
||||
"There are no document types. Not training document type "
|
||||
"classifier."
|
||||
)
|
||||
|
||||
self.data_hash = new_data_hash
|
||||
|
||||
return True
|
||||
|
||||
def predict_correspondent(self, content):
|
||||
if self.correspondent_classifier:
|
||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||
y = self.correspondent_classifier.predict(X)
|
||||
correspondent_id = self.correspondent_binarizer.inverse_transform(y)[0]
|
||||
correspondent_id = self.correspondent_classifier.predict(X)
|
||||
if correspondent_id != -1:
|
||||
return correspondent_id
|
||||
else:
|
||||
@ -181,8 +206,7 @@ class DocumentClassifier(object):
|
||||
def predict_document_type(self, content):
|
||||
if self.document_type_classifier:
|
||||
X = self.data_vectorizer.transform([preprocess_content(content)])
|
||||
y = self.document_type_classifier.predict(X)
|
||||
document_type_id = self.document_type_binarizer.inverse_transform(y)[0]
|
||||
document_type_id = self.document_type_classifier.predict(X)
|
||||
if document_type_id != -1:
|
||||
return document_type_id
|
||||
else:
|
||||
|
@ -10,7 +10,7 @@ from django.db import transaction
|
||||
from django.utils import timezone
|
||||
|
||||
from paperless.db import GnuPG
|
||||
from .classifier import DocumentClassifier
|
||||
from .classifier import DocumentClassifier, IncompatibleClassifierVersionError
|
||||
from .models import Document, FileInfo
|
||||
from .parsers import ParseError, get_parser_class
|
||||
from .signals import (
|
||||
@ -133,11 +133,8 @@ class Consumer:
|
||||
try:
|
||||
self.classifier.reload()
|
||||
classifier = self.classifier
|
||||
except FileNotFoundError:
|
||||
self.log("warning", "Cannot classify documents, classifier "
|
||||
"model file was not found. Consider "
|
||||
"running python manage.py "
|
||||
"document_create_classifier.")
|
||||
except (FileNotFoundError, IncompatibleClassifierVersionError) as e:
|
||||
logging.getLogger(__name__).warning("Cannot classify documents: {}.".format(e))
|
||||
|
||||
document_consumption_finished.send(
|
||||
sender=self.__class__,
|
||||
|
@ -1,7 +1,8 @@
|
||||
import logging
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
from documents.classifier import DocumentClassifier
|
||||
from documents.classifier import DocumentClassifier, \
|
||||
IncompatibleClassifierVersionError
|
||||
from paperless import settings
|
||||
from ...mixins import Renderable
|
||||
|
||||
@ -18,12 +19,25 @@ class Command(Renderable, BaseCommand):
|
||||
|
||||
def handle(self, *args, **options):
|
||||
classifier = DocumentClassifier()
|
||||
|
||||
try:
|
||||
classifier.train()
|
||||
# load the classifier, since we might not have to train it again.
|
||||
classifier.reload()
|
||||
except (FileNotFoundError, IncompatibleClassifierVersionError):
|
||||
# This is what we're going to fix here.
|
||||
pass
|
||||
|
||||
try:
|
||||
if classifier.train():
|
||||
logging.getLogger(__name__).info(
|
||||
"Saving models to {}...".format(settings.MODEL_FILE)
|
||||
"Saving updated classifier model to {}...".format(settings.MODEL_FILE)
|
||||
)
|
||||
classifier.save_classifier()
|
||||
else:
|
||||
logging.getLogger(__name__).debug(
|
||||
"Training data unchanged."
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logging.getLogger(__name__).error(
|
||||
"Classifier error: " + str(e)
|
||||
|
@ -2,7 +2,8 @@ import logging
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
|
||||
from documents.classifier import DocumentClassifier
|
||||
from documents.classifier import DocumentClassifier, \
|
||||
IncompatibleClassifierVersionError
|
||||
from documents.models import Document
|
||||
from ...mixins import Renderable
|
||||
from ...signals.handlers import set_correspondent, set_document_type, set_tags
|
||||
@ -72,10 +73,8 @@ class Command(Renderable, BaseCommand):
|
||||
classifier = DocumentClassifier()
|
||||
try:
|
||||
classifier.reload()
|
||||
except FileNotFoundError:
|
||||
logging.getLogger(__name__).warning("Cannot classify documents, "
|
||||
"classifier model file was not "
|
||||
"found.")
|
||||
except (FileNotFoundError, IncompatibleClassifierVersionError) as e:
|
||||
logging.getLogger(__name__).warning("Cannot classify documents: {}.".format(e))
|
||||
classifier = None
|
||||
|
||||
for document in documents:
|
||||
|
Loading…
x
Reference in New Issue
Block a user