mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-09-16 21:55:37 -05:00
feat: refactor for pluggable consumers
I've broken out the OCR-specific code from the consumers and dumped it all into its own app, `paperless_tesseract`. This new app should serve as a sample of how to create one's own consumer for different file types. Documentation for how to do this isn't ready yet, but for the impatient: * Create a new app * containing a `parsers.py` for your parser modelled after `paperless_tesseract.parsers.RasterisedDocumentParser` * containing a `signals.py` with a handler moddelled after `paperless_tesseract.signals.ConsumerDeclaration` * connect the signal handler to `documents.signals.document_consumer_declaration` in `your_app.apps` * Install the app into Paperless by declaring `PAPERLESS_INSTALLED_APPS=your_app`. Additional apps should be separated with commas. * Restart the consumer
This commit is contained in:
214
src/paperless_tesseract/parsers.py
Normal file
214
src/paperless_tesseract/parsers.py
Normal file
@@ -0,0 +1,214 @@
|
||||
import itertools
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
from multiprocessing.pool import Pool
|
||||
|
||||
import langdetect
|
||||
import pyocr
|
||||
from django.conf import settings
|
||||
from documents.parsers import DocumentParser, ParseError
|
||||
from PIL import Image
|
||||
from pyocr.libtesseract.tesseract_raw import \
|
||||
TesseractError as OtherTesseractError
|
||||
from pyocr.tesseract import TesseractError
|
||||
|
||||
from .languages import ISO639
|
||||
|
||||
|
||||
class OCRError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class RasterisedDocumentParser(DocumentParser):
|
||||
"""
|
||||
This parser uses Tesseract to try and get some text out of a rasterised
|
||||
image, whether it's a PDF, or other graphical format (JPEG, TIFF, etc.)
|
||||
"""
|
||||
|
||||
CONVERT = settings.CONVERT_BINARY
|
||||
DENSITY = settings.CONVERT_DENSITY if settings.CONVERT_DENSITY else 300
|
||||
THREADS = int(settings.OCR_THREADS) if settings.OCR_THREADS else None
|
||||
UNPAPER = settings.UNPAPER_BINARY
|
||||
DEFAULT_OCR_LANGUAGE = settings.OCR_LANGUAGE
|
||||
|
||||
def get_thumbnail(self):
|
||||
"""
|
||||
The thumbnail of a PDF is just a 500px wide image of the first page.
|
||||
"""
|
||||
|
||||
run_convert(
|
||||
self.CONVERT,
|
||||
"-scale", "500x5000",
|
||||
"-alpha", "remove",
|
||||
self.document_path, os.path.join(self.tempdir, "convert-%04d.png")
|
||||
)
|
||||
|
||||
return os.path.join(self.tempdir, "convert-0000.png")
|
||||
|
||||
def get_text(self):
|
||||
|
||||
images = self._get_greyscale()
|
||||
|
||||
try:
|
||||
|
||||
return self._get_ocr(images)
|
||||
except OCRError as e:
|
||||
raise ParseError(e)
|
||||
|
||||
def _get_greyscale(self):
|
||||
"""
|
||||
Greyscale images are easier for Tesseract to OCR
|
||||
"""
|
||||
|
||||
# Convert PDF to multiple PNMs
|
||||
pnm = os.path.join(self.tempdir, "convert-%04d.pnm")
|
||||
run_convert(
|
||||
self.CONVERT,
|
||||
"-density", str(self.DENSITY),
|
||||
"-depth", "8",
|
||||
"-type", "grayscale",
|
||||
self.document_path, pnm,
|
||||
)
|
||||
|
||||
# Get a list of converted images
|
||||
pnms = []
|
||||
for f in os.listdir(self.tempdir):
|
||||
if f.endswith(".pnm"):
|
||||
pnms.append(os.path.join(self.tempdir, f))
|
||||
|
||||
# Run unpaper in parallel on converted images
|
||||
with Pool(processes=self.THREADS) as pool:
|
||||
pool.map(run_unpaper, itertools.product([self.UNPAPER], pnms))
|
||||
|
||||
# Return list of converted images, processed with unpaper
|
||||
pnms = []
|
||||
for f in os.listdir(self.tempdir):
|
||||
if f.endswith(".unpaper.pnm"):
|
||||
pnms.append(os.path.join(self.tempdir, f))
|
||||
|
||||
return sorted(filter(lambda __: os.path.isfile(__), pnms))
|
||||
|
||||
def _guess_language(self, text):
|
||||
try:
|
||||
guess = langdetect.detect(text)
|
||||
self.log("debug", "Language detected: {}".format(guess))
|
||||
return guess
|
||||
except Exception as e:
|
||||
self.log("warning", "Language detection error: {}".format(e))
|
||||
|
||||
def _get_ocr(self, imgs):
|
||||
"""
|
||||
Attempts to do the best job possible OCR'ing the document based on
|
||||
simple language detection trial & error.
|
||||
"""
|
||||
|
||||
if not imgs:
|
||||
raise OCRError("No images found")
|
||||
|
||||
self.log("info", "OCRing the document")
|
||||
|
||||
# Since the division gets rounded down by int, this calculation works
|
||||
# for every edge-case, i.e. 1
|
||||
middle = int(len(imgs) / 2)
|
||||
raw_text = self._ocr([imgs[middle]], self.DEFAULT_OCR_LANGUAGE)
|
||||
|
||||
guessed_language = self._guess_language(raw_text)
|
||||
|
||||
if not guessed_language or guessed_language not in ISO639:
|
||||
self.log("warning", "Language detection failed!")
|
||||
if settings.FORGIVING_OCR:
|
||||
self.log(
|
||||
"warning",
|
||||
"As FORGIVING_OCR is enabled, we're going to make the "
|
||||
"best with what we have."
|
||||
)
|
||||
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
|
||||
return raw_text
|
||||
raise OCRError("Language detection failed")
|
||||
|
||||
if ISO639[guessed_language] == self.DEFAULT_OCR_LANGUAGE:
|
||||
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
|
||||
return raw_text
|
||||
|
||||
try:
|
||||
return self._ocr(imgs, ISO639[guessed_language])
|
||||
except pyocr.pyocr.tesseract.TesseractError:
|
||||
if settings.FORGIVING_OCR:
|
||||
self.log(
|
||||
"warning",
|
||||
"OCR for {} failed, but we're going to stick with what "
|
||||
"we've got since FORGIVING_OCR is enabled.".format(
|
||||
guessed_language
|
||||
)
|
||||
)
|
||||
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
|
||||
return raw_text
|
||||
raise OCRError(
|
||||
"The guessed language is not available in this instance of "
|
||||
"Tesseract."
|
||||
)
|
||||
|
||||
def _ocr(self, imgs, lang):
|
||||
"""
|
||||
Performs a single OCR attempt.
|
||||
"""
|
||||
|
||||
if not imgs:
|
||||
return ""
|
||||
|
||||
self.log("info", "Parsing for {}".format(lang))
|
||||
|
||||
with Pool(processes=self.THREADS) as pool:
|
||||
r = pool.map(image_to_string, itertools.product(imgs, [lang]))
|
||||
r = " ".join(r)
|
||||
|
||||
# Strip out excess white space to allow matching to go smoother
|
||||
return strip_excess_whitespace(r)
|
||||
|
||||
def _assemble_ocr_sections(self, imgs, middle, text):
|
||||
"""
|
||||
Given a `middle` value and the text that middle page represents, we OCR
|
||||
the remainder of the document and return the whole thing.
|
||||
"""
|
||||
text = self._ocr(imgs[:middle], self.DEFAULT_OCR_LANGUAGE) + text
|
||||
text += self._ocr(imgs[middle + 1:], self.DEFAULT_OCR_LANGUAGE)
|
||||
return text
|
||||
|
||||
|
||||
def run_convert(*args):
|
||||
|
||||
environment = os.environ.copy()
|
||||
if settings.CONVERT_MEMORY_LIMIT:
|
||||
environment["MAGICK_MEMORY_LIMIT"] = settings.CONVERT_MEMORY_LIMIT
|
||||
if settings.CONVERT_TMPDIR:
|
||||
environment["MAGICK_TMPDIR"] = settings.CONVERT_TMPDIR
|
||||
|
||||
subprocess.Popen(args, env=environment).wait()
|
||||
|
||||
|
||||
def run_unpaper(args):
|
||||
unpaper, pnm = args
|
||||
subprocess.Popen(
|
||||
(unpaper, pnm, pnm.replace(".pnm", ".unpaper.pnm"))).wait()
|
||||
|
||||
|
||||
def strip_excess_whitespace(text):
|
||||
collapsed_spaces = re.sub(r"([^\S\r\n]+)", " ", text)
|
||||
no_leading_whitespace = re.sub(
|
||||
"([\n\r]+)([^\S\n\r]+)", '\\1', collapsed_spaces)
|
||||
no_trailing_whitespace = re.sub("([^\S\n\r]+)$", '', no_leading_whitespace)
|
||||
return no_trailing_whitespace
|
||||
|
||||
|
||||
def image_to_string(args):
|
||||
img, lang = args
|
||||
ocr = pyocr.get_available_tools()[0]
|
||||
with Image.open(os.path.join(RasterisedDocumentParser.SCRATCH, img)) as f:
|
||||
if ocr.can_detect_orientation():
|
||||
try:
|
||||
orientation = ocr.detect_orientation(f, lang=lang)
|
||||
f = f.rotate(orientation["angle"], expand=1)
|
||||
except (TesseractError, OtherTesseractError):
|
||||
pass
|
||||
return ocr.image_to_string(f, lang=lang)
|
Reference in New Issue
Block a user