mirror of
				https://github.com/paperless-ngx/paperless-ngx.git
				synced 2025-10-30 03:56:23 -05:00 
			
		
		
		
	Fixed a few things
This commit is contained in:
		| @@ -4,6 +4,7 @@ from django.contrib.admin.utils import model_ngettext | |||||||
| from django.core.exceptions import PermissionDenied | from django.core.exceptions import PermissionDenied | ||||||
| from django.template.response import TemplateResponse | from django.template.response import TemplateResponse | ||||||
|  |  | ||||||
|  | from documents.classifier import DocumentClassifier | ||||||
| from documents.models import Tag, Correspondent, DocumentType | from documents.models import Tag, Correspondent, DocumentType | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -223,3 +224,28 @@ def remove_document_type_from_selected(modeladmin, request, queryset): | |||||||
|  |  | ||||||
|  |  | ||||||
| remove_document_type_from_selected.short_description = "Remove document type from selected documents" | remove_document_type_from_selected.short_description = "Remove document type from selected documents" | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def run_document_classifier_on_selected(modeladmin, request, queryset): | ||||||
|  |     if not modeladmin.has_change_permission(request): | ||||||
|  |         raise PermissionDenied | ||||||
|  |  | ||||||
|  |     try: | ||||||
|  |         clf = DocumentClassifier.load_classifier() | ||||||
|  |     except FileNotFoundError: | ||||||
|  |         modeladmin.message_user(request, "Classifier model file not found.", messages.ERROR) | ||||||
|  |         return None | ||||||
|  |  | ||||||
|  |     n = queryset.count() | ||||||
|  |     if n: | ||||||
|  |         for obj in queryset: | ||||||
|  |             clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_type=True, replace_tags=True) | ||||||
|  |             modeladmin.log_change(request, obj, str(obj)) | ||||||
|  |         modeladmin.message_user(request, "Successfully applied tags, correspondent and type to %(count)d %(items)s." % { | ||||||
|  |             "count": n, "items": model_ngettext(modeladmin.opts, n) | ||||||
|  |         }, messages.SUCCESS) | ||||||
|  |  | ||||||
|  |     return None | ||||||
|  |  | ||||||
|  |  | ||||||
|  | run_document_classifier_on_selected.short_description = "Run document classifier on selected" | ||||||
|   | |||||||
| @@ -13,7 +13,8 @@ from django.utils.safestring import mark_safe | |||||||
| from django.db import models | from django.db import models | ||||||
|  |  | ||||||
| from documents.actions import add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, \ | from documents.actions import add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, \ | ||||||
|     remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected |     remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected, \ | ||||||
|  |     run_document_classifier_on_selected | ||||||
| from .models import Correspondent, Tag, Document, Log, DocumentType | from .models import Correspondent, Tag, Document, Log, DocumentType | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -165,7 +166,7 @@ class DocumentAdmin(CommonAdmin): | |||||||
|  |  | ||||||
|     ordering = ["-created", "correspondent"] |     ordering = ["-created", "correspondent"] | ||||||
|  |  | ||||||
|     actions = [add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected] |     actions = [add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected, run_document_classifier_on_selected] | ||||||
|  |  | ||||||
|     date_hierarchy = 'created' |     date_hierarchy = 'created' | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,9 +1,15 @@ | |||||||
|  | import logging | ||||||
| import os | import os | ||||||
| import pickle | import pickle | ||||||
|  |  | ||||||
| from documents.models import Correspondent, DocumentType, Tag | from documents.models import Correspondent, DocumentType, Tag, Document | ||||||
| from paperless import settings | from paperless import settings | ||||||
|  |  | ||||||
|  | from sklearn.feature_extraction.text import CountVectorizer | ||||||
|  | from sklearn.multiclass import OneVsRestClassifier | ||||||
|  | from sklearn.naive_bayes import MultinomialNB | ||||||
|  | from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer | ||||||
|  |  | ||||||
|  |  | ||||||
| def preprocess_content(content): | def preprocess_content(content): | ||||||
|     content = content.lower() |     content = content.lower() | ||||||
| @@ -61,29 +67,85 @@ class DocumentClassifier(object): | |||||||
|             pickle.dump(self.correspondent_classifier, f) |             pickle.dump(self.correspondent_classifier, f) | ||||||
|             pickle.dump(self.type_classifier, f) |             pickle.dump(self.type_classifier, f) | ||||||
|  |  | ||||||
|     def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False): |     def train(self): | ||||||
|  |         data = list() | ||||||
|  |         labels_tags = list() | ||||||
|  |         labels_correspondent = list() | ||||||
|  |         labels_type = list() | ||||||
|  |  | ||||||
|  |         # Step 1: Extract and preprocess training data from the database. | ||||||
|  |         logging.getLogger(__name__).info("Gathering data from database...") | ||||||
|  |         for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||||
|  |             data.append(preprocess_content(doc.content)) | ||||||
|  |             labels_type.append(doc.document_type.name if doc.document_type is not None else "-") | ||||||
|  |             labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") | ||||||
|  |             tags = [tag.name for tag in doc.tags.all()] | ||||||
|  |             labels_tags.append(tags) | ||||||
|  |  | ||||||
|  |         # Step 2: vectorize data | ||||||
|  |         logging.getLogger(__name__).info("Vectorizing data...") | ||||||
|  |         self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1) | ||||||
|  |         data_vectorized = self.data_vectorizer.fit_transform(data) | ||||||
|  |  | ||||||
|  |         self.tags_binarizer = MultiLabelBinarizer() | ||||||
|  |         labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags) | ||||||
|  |  | ||||||
|  |         self.correspondent_binarizer = LabelBinarizer() | ||||||
|  |         labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent) | ||||||
|  |  | ||||||
|  |         self.type_binarizer = LabelBinarizer() | ||||||
|  |         labels_type_vectorized = self.type_binarizer.fit_transform(labels_type) | ||||||
|  |  | ||||||
|  |         # Step 3: train the classifiers | ||||||
|  |         if len(self.tags_binarizer.classes_) > 0: | ||||||
|  |             logging.getLogger(__name__).info("Training tags classifier...") | ||||||
|  |             self.tags_classifier = OneVsRestClassifier(MultinomialNB()) | ||||||
|  |             self.tags_classifier.fit(data_vectorized, labels_tags_vectorized) | ||||||
|  |         else: | ||||||
|  |             self.tags_classifier = None | ||||||
|  |             logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") | ||||||
|  |  | ||||||
|  |         if len(self.correspondent_binarizer.classes_) > 0: | ||||||
|  |             logging.getLogger(__name__).info("Training correspondent classifier...") | ||||||
|  |             self.correspondent_classifier = OneVsRestClassifier(MultinomialNB()) | ||||||
|  |             self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) | ||||||
|  |         else: | ||||||
|  |             self.correspondent_classifier = None | ||||||
|  |             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") | ||||||
|  |  | ||||||
|  |         if len(self.type_binarizer.classes_) > 0: | ||||||
|  |             logging.getLogger(__name__).info("Training document type classifier...") | ||||||
|  |             self.type_classifier = OneVsRestClassifier(MultinomialNB()) | ||||||
|  |             self.type_classifier.fit(data_vectorized, labels_type_vectorized) | ||||||
|  |         else: | ||||||
|  |             self.type_classifier = None | ||||||
|  |             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") | ||||||
|  |  | ||||||
|  |     def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False, replace_tags=False): | ||||||
|         X = self.data_vectorizer.transform([preprocess_content(document.content)]) |         X = self.data_vectorizer.transform([preprocess_content(document.content)]) | ||||||
|  |  | ||||||
|         update_fields=() |         update_fields=() | ||||||
|  |  | ||||||
|         if classify_correspondent: |         if classify_correspondent and self.correspondent_classifier is not None: | ||||||
|             y_correspondent = self.correspondent_classifier.predict(X) |             y_correspondent = self.correspondent_classifier.predict(X) | ||||||
|             correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] |             correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] | ||||||
|             print("Detected correspondent:", correspondent) |             print("Detected correspondent:", correspondent) | ||||||
|             document.correspondent = Correspondent.objects.filter(name=correspondent).first() |             document.correspondent = Correspondent.objects.filter(name=correspondent).first() | ||||||
|             update_fields = update_fields + ("correspondent",) |             update_fields = update_fields + ("correspondent",) | ||||||
|  |  | ||||||
|         if classify_type: |         if classify_type and self.type_classifier is not None: | ||||||
|             y_type = self.type_classifier.predict(X) |             y_type = self.type_classifier.predict(X) | ||||||
|             type = self.type_binarizer.inverse_transform(y_type)[0] |             type = self.type_binarizer.inverse_transform(y_type)[0] | ||||||
|             print("Detected document type:", type) |             print("Detected document type:", type) | ||||||
|             document.document_type = DocumentType.objects.filter(name=type).first() |             document.document_type = DocumentType.objects.filter(name=type).first() | ||||||
|             update_fields = update_fields + ("document_type",) |             update_fields = update_fields + ("document_type",) | ||||||
|  |  | ||||||
|         if classify_tags: |         if classify_tags and self.tags_classifier is not None: | ||||||
|             y_tags = self.tags_classifier.predict(X) |             y_tags = self.tags_classifier.predict(X) | ||||||
|             tags = self.tags_binarizer.inverse_transform(y_tags)[0] |             tags = self.tags_binarizer.inverse_transform(y_tags)[0] | ||||||
|             print("Detected tags:", tags) |             print("Detected tags:", tags) | ||||||
|  |             if replace_tags: | ||||||
|  |                 document.tags.clear() | ||||||
|             document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags]) |             document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags]) | ||||||
|  |  | ||||||
|         document.save(update_fields=update_fields) |         document.save(update_fields=update_fields) | ||||||
|   | |||||||
| @@ -3,13 +3,7 @@ import os.path | |||||||
| import pickle | import pickle | ||||||
|  |  | ||||||
| from django.core.management.base import BaseCommand | from django.core.management.base import BaseCommand | ||||||
| from sklearn.feature_extraction.text import CountVectorizer | from documents.classifier import  DocumentClassifier | ||||||
| from sklearn.multiclass import OneVsRestClassifier |  | ||||||
| from sklearn.naive_bayes import MultinomialNB |  | ||||||
| from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder |  | ||||||
|  |  | ||||||
| from documents.classifier import preprocess_content, DocumentClassifier |  | ||||||
| from documents.models import Document |  | ||||||
| from paperless import settings | from paperless import settings | ||||||
| from ...mixins import Renderable | from ...mixins import Renderable | ||||||
|  |  | ||||||
| @@ -26,64 +20,9 @@ class Command(Renderable, BaseCommand): | |||||||
|     def handle(self, *args, **options): |     def handle(self, *args, **options): | ||||||
|         clf = DocumentClassifier() |         clf = DocumentClassifier() | ||||||
|  |  | ||||||
|         data = list() |         clf.train() | ||||||
|         labels_tags = list() |  | ||||||
|         labels_correspondent = list() |  | ||||||
|         labels_type = list() |  | ||||||
|  |  | ||||||
|         # Step 1: Extract and preprocess training data from the database. |  | ||||||
|         logging.getLogger(__name__).info("Gathering data from database...") |  | ||||||
|         for doc in Document.objects.exclude(tags__is_inbox_tag=True): |  | ||||||
|             data.append(preprocess_content(doc.content)) |  | ||||||
|             labels_type.append(doc.document_type.name if doc.document_type is not None else "-") |  | ||||||
|             labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") |  | ||||||
|             tags = [tag.name for tag in doc.tags.all()] |  | ||||||
|             labels_tags.append(tags) |  | ||||||
|  |  | ||||||
|         # Step 2: vectorize data |  | ||||||
|         logging.getLogger(__name__).info("Vectorizing data...") |  | ||||||
|         clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1) |  | ||||||
|         data_vectorized = clf.data_vectorizer.fit_transform(data) |  | ||||||
|  |  | ||||||
|         print(clf.data_vectorizer.vocabulary_) |  | ||||||
|  |  | ||||||
|         logging.getLogger(__name__).info("Shape of vectorized data: {}".format(data_vectorized.shape)) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|         clf.tags_binarizer = MultiLabelBinarizer() |  | ||||||
|         labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags) |  | ||||||
|  |  | ||||||
|         clf.correspondent_binarizer = LabelEncoder() |  | ||||||
|         labels_correspondent_vectorized = clf.correspondent_binarizer.fit_transform(labels_correspondent) |  | ||||||
|  |  | ||||||
|         clf.type_binarizer = LabelEncoder() |  | ||||||
|         labels_type_vectorized = clf.type_binarizer.fit_transform(labels_type) |  | ||||||
|  |  | ||||||
|         # Step 3: train the classifiers |  | ||||||
|         if len(clf.tags_binarizer.classes_) > 0: |  | ||||||
|             logging.getLogger(__name__).info("Training tags classifier") |  | ||||||
|             clf.tags_classifier = OneVsRestClassifier(MultinomialNB()) |  | ||||||
|             clf.tags_classifier.fit(data_vectorized, labels_tags_vectorized) |  | ||||||
|         else: |  | ||||||
|             clf.tags_classifier = None |  | ||||||
|             logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") |  | ||||||
|  |  | ||||||
|         if len(clf.correspondent_binarizer.classes_) > 0: |  | ||||||
|             logging.getLogger(__name__).info("Training correspondent classifier") |  | ||||||
|             clf.correspondent_classifier = MultinomialNB() |  | ||||||
|             clf.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) |  | ||||||
|         else: |  | ||||||
|             clf.correspondent_classifier = None |  | ||||||
|             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") |  | ||||||
|  |  | ||||||
|         if len(clf.type_binarizer.classes_) > 0: |  | ||||||
|             logging.getLogger(__name__).info("Training document type classifier") |  | ||||||
|             clf.type_classifier = MultinomialNB() |  | ||||||
|             clf.type_classifier.fit(data_vectorized, labels_type_vectorized) |  | ||||||
|         else: |  | ||||||
|             clf.type_classifier = None |  | ||||||
|             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") |  | ||||||
|  |  | ||||||
|         logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...") |         logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...") | ||||||
|  |  | ||||||
|         clf.save_classifier() |         clf.save_classifier() | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Jonas Winkler
					Jonas Winkler