mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
removed matching model fields, automatic classifier reloading, added autmatic_classification field to matching model
This commit is contained in:
parent
30134034e2
commit
70bd05450a
@ -102,9 +102,8 @@ class CommonAdmin(admin.ModelAdmin):
|
||||
|
||||
class CorrespondentAdmin(CommonAdmin):
|
||||
|
||||
list_display = ("name", "match", "matching_algorithm", "document_count", "last_correspondence")
|
||||
list_filter = ("matching_algorithm",)
|
||||
list_editable = ("match", "matching_algorithm")
|
||||
list_display = ("name", "automatic_classification", "document_count", "last_correspondence")
|
||||
list_editable = ("automatic_classification",)
|
||||
|
||||
def get_queryset(self, request):
|
||||
qs = super(CorrespondentAdmin, self).get_queryset(request)
|
||||
@ -122,10 +121,9 @@ class CorrespondentAdmin(CommonAdmin):
|
||||
|
||||
class TagAdmin(CommonAdmin):
|
||||
|
||||
list_display = ("name", "colour", "match", "matching_algorithm",
|
||||
"document_count")
|
||||
list_filter = ("colour", "matching_algorithm")
|
||||
list_editable = ("colour", "match", "matching_algorithm")
|
||||
list_display = ("name", "colour", "automatic_classification", "document_count")
|
||||
list_filter = ("colour",)
|
||||
list_editable = ("colour", "automatic_classification")
|
||||
|
||||
def get_queryset(self, request):
|
||||
qs = super(TagAdmin, self).get_queryset(request)
|
||||
@ -139,9 +137,8 @@ class TagAdmin(CommonAdmin):
|
||||
|
||||
class DocumentTypeAdmin(CommonAdmin):
|
||||
|
||||
list_display = ("name", "match", "matching_algorithm", "document_count")
|
||||
list_filter = ("matching_algorithm",)
|
||||
list_editable = ("match", "matching_algorithm")
|
||||
list_display = ("name", "automatic_classification", "document_count")
|
||||
list_editable = ("automatic_classification",)
|
||||
|
||||
def get_queryset(self, request):
|
||||
qs = super(DocumentTypeAdmin, self).get_queryset(request)
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from documents.models import Correspondent, DocumentType, Tag
|
||||
@ -16,6 +17,18 @@ def preprocess_content(content):
|
||||
|
||||
class DocumentClassifier(object):
|
||||
|
||||
classifier_version = None
|
||||
|
||||
data_vectorizer = None
|
||||
|
||||
tags_binarizer = None
|
||||
correspondent_binarizer = None
|
||||
type_binarizer = None
|
||||
|
||||
tags_classifier = None
|
||||
correspondent_classifier = None
|
||||
type_classifier = None
|
||||
|
||||
@staticmethod
|
||||
def load_classifier():
|
||||
clf = DocumentClassifier()
|
||||
@ -23,15 +36,18 @@ class DocumentClassifier(object):
|
||||
return clf
|
||||
|
||||
def reload(self):
|
||||
with open(settings.MODEL_FILE, "rb") as f:
|
||||
self.data_vectorizer = pickle.load(f)
|
||||
self.tags_binarizer = pickle.load(f)
|
||||
self.correspondent_binarizer = pickle.load(f)
|
||||
self.type_binarizer = pickle.load(f)
|
||||
if self.classifier_version is None or os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
||||
print("reloading classifier")
|
||||
with open(settings.MODEL_FILE, "rb") as f:
|
||||
self.data_vectorizer = pickle.load(f)
|
||||
self.tags_binarizer = pickle.load(f)
|
||||
self.correspondent_binarizer = pickle.load(f)
|
||||
self.type_binarizer = pickle.load(f)
|
||||
|
||||
self.tags_classifier = pickle.load(f)
|
||||
self.correspondent_classifier = pickle.load(f)
|
||||
self.type_classifier = pickle.load(f)
|
||||
self.tags_classifier = pickle.load(f)
|
||||
self.correspondent_classifier = pickle.load(f)
|
||||
self.type_classifier = pickle.load(f)
|
||||
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
|
||||
|
||||
def save_classifier(self):
|
||||
with open(settings.MODEL_FILE, "wb") as f:
|
||||
|
6
src/documents/consumer.py
Normal file → Executable file
6
src/documents/consumer.py
Normal file → Executable file
@ -221,12 +221,6 @@ class Consumer:
|
||||
storage_type=self.storage_type
|
||||
)
|
||||
|
||||
relevant_tags = set(list(Tag.match_all(text)) + list(file_info.tags))
|
||||
if relevant_tags:
|
||||
tag_names = ", ".join([t.slug for t in relevant_tags])
|
||||
self.log("debug", "Tagging with {}".format(tag_names))
|
||||
document.tags.add(*relevant_tags)
|
||||
|
||||
self._write(document, doc, document.source_path)
|
||||
self._write(document, thumbnail, document.thumbnail_path)
|
||||
|
||||
|
@ -42,9 +42,14 @@ class Command(Renderable, BaseCommand):
|
||||
|
||||
# Step 2: vectorize data
|
||||
logging.getLogger(__name__).info("Vectorizing data...")
|
||||
clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05)
|
||||
clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1)
|
||||
data_vectorized = clf.data_vectorizer.fit_transform(data)
|
||||
|
||||
print(clf.data_vectorizer.vocabulary_)
|
||||
|
||||
logging.getLogger(__name__).info("Shape of vectorized data: {}".format(data_vectorized.shape))
|
||||
|
||||
|
||||
clf.tags_binarizer = MultiLabelBinarizer()
|
||||
labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags)
|
||||
|
||||
|
@ -46,7 +46,11 @@ class Command(Renderable, BaseCommand):
|
||||
documents = Document.objects.all().exclude(tags__is_archived_tag=True).distinct()
|
||||
|
||||
logging.getLogger(__name__).info("Loading classifier")
|
||||
clf = DocumentClassifier.load_classifier()
|
||||
try:
|
||||
clf = DocumentClassifier.load_classifier()
|
||||
except FileNotFoundError:
|
||||
logging.getLogger(__name__).fatal("Cannot classify documents, classifier model file was not found.")
|
||||
return
|
||||
|
||||
|
||||
for document in documents:
|
||||
|
77
src/documents/migrations/0024_auto_20180904_1425.py
Executable file
77
src/documents/migrations/0024_auto_20180904_1425.py
Executable file
@ -0,0 +1,77 @@
|
||||
# Generated by Django 2.0.8 on 2018-09-04 14:25
|
||||
|
||||
from django.db import migrations, models
|
||||
|
||||
|
||||
def transfer_automatic_classification(apps, schema_editor):
|
||||
for model_name in ["Tag", "Correspondent", "DocumentType"]:
|
||||
model_class = apps.get_model("documents", model_name)
|
||||
for o in model_class.objects.all():
|
||||
o.automatic_classification = o.match is not None and len(o.match) > 0
|
||||
o.save()
|
||||
|
||||
|
||||
def reverse_automatic_classification(apps, schema_editor):
|
||||
pass
|
||||
|
||||
|
||||
class Migration(migrations.Migration):
|
||||
|
||||
dependencies = [
|
||||
('documents', '0023_auto_20180823_1155'),
|
||||
]
|
||||
|
||||
operations = [
|
||||
migrations.AddField(
|
||||
model_name='correspondent',
|
||||
name='automatic_classification',
|
||||
field=models.BooleanField(default=False, help_text='Automatically assign to newly added documents based on current usage in your document collection.'),
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='documenttype',
|
||||
name='automatic_classification',
|
||||
field=models.BooleanField(default=False, help_text='Automatically assign to newly added documents based on current usage in your document collection.'),
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='tag',
|
||||
name='automatic_classification',
|
||||
field=models.BooleanField(default=False, help_text='Automatically assign to newly added documents based on current usage in your document collection.'),
|
||||
),
|
||||
migrations.RunPython(transfer_automatic_classification, reverse_automatic_classification),
|
||||
migrations.RemoveField(
|
||||
model_name='correspondent',
|
||||
name='is_insensitive',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='correspondent',
|
||||
name='match',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='correspondent',
|
||||
name='matching_algorithm',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='documenttype',
|
||||
name='is_insensitive',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='documenttype',
|
||||
name='match',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='documenttype',
|
||||
name='matching_algorithm',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='tag',
|
||||
name='is_insensitive',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='tag',
|
||||
name='match',
|
||||
),
|
||||
migrations.RemoveField(
|
||||
model_name='tag',
|
||||
name='matching_algorithm',
|
||||
),
|
||||
]
|
@ -15,48 +15,15 @@ from django.db import models
|
||||
from django.template.defaultfilters import slugify
|
||||
from django.utils import timezone
|
||||
|
||||
from reminders.models import Reminder
|
||||
from .managers import LogManager
|
||||
|
||||
|
||||
class MatchingModel(models.Model):
|
||||
|
||||
MATCH_ANY = 1
|
||||
MATCH_ALL = 2
|
||||
MATCH_LITERAL = 3
|
||||
MATCH_REGEX = 4
|
||||
MATCH_FUZZY = 5
|
||||
MATCHING_ALGORITHMS = (
|
||||
(MATCH_ANY, "Any"),
|
||||
(MATCH_ALL, "All"),
|
||||
(MATCH_LITERAL, "Literal"),
|
||||
(MATCH_REGEX, "Regular Expression"),
|
||||
(MATCH_FUZZY, "Fuzzy Match"),
|
||||
)
|
||||
|
||||
name = models.CharField(max_length=128, unique=True)
|
||||
slug = models.SlugField(blank=True)
|
||||
|
||||
match = models.CharField(max_length=256, blank=True)
|
||||
matching_algorithm = models.PositiveIntegerField(
|
||||
choices=MATCHING_ALGORITHMS,
|
||||
default=MATCH_ANY,
|
||||
help_text=(
|
||||
"Which algorithm you want to use when matching text to the OCR'd "
|
||||
"PDF. Here, \"any\" looks for any occurrence of any word "
|
||||
"provided in the PDF, while \"all\" requires that every word "
|
||||
"provided appear in the PDF, albeit not in the order provided. A "
|
||||
"\"literal\" match means that the text you enter must appear in "
|
||||
"the PDF exactly as you've entered it, and \"regular expression\" "
|
||||
"uses a regex to match the PDF. (If you don't know what a regex "
|
||||
"is, you probably don't want this option.) Finally, a \"fuzzy "
|
||||
"match\" looks for words or phrases that are mostly—but not "
|
||||
"exactly—the same, which can be useful for matching against "
|
||||
"documents containg imperfections that foil accurate OCR."
|
||||
)
|
||||
)
|
||||
|
||||
is_insensitive = models.BooleanField(default=True)
|
||||
automatic_classification = models.BooleanField(default=False, help_text='Automatically assign to newly added documents based on current usage in your document collection.')
|
||||
|
||||
class Meta:
|
||||
abstract = True
|
||||
@ -64,87 +31,8 @@ class MatchingModel(models.Model):
|
||||
def __str__(self):
|
||||
return self.name
|
||||
|
||||
@property
|
||||
def conditions(self):
|
||||
return "{}: \"{}\" ({})".format(
|
||||
self.name, self.match, self.get_matching_algorithm_display())
|
||||
|
||||
@classmethod
|
||||
def match_all(cls, text, tags=None):
|
||||
|
||||
if tags is None:
|
||||
tags = cls.objects.all()
|
||||
|
||||
text = text.lower()
|
||||
for tag in tags:
|
||||
if tag.matches(text):
|
||||
yield tag
|
||||
|
||||
def matches(self, text):
|
||||
|
||||
search_kwargs = {}
|
||||
|
||||
# Check that match is not empty
|
||||
if self.match.strip() == "":
|
||||
return False
|
||||
|
||||
if self.is_insensitive:
|
||||
search_kwargs = {"flags": re.IGNORECASE}
|
||||
|
||||
if self.matching_algorithm == self.MATCH_ALL:
|
||||
for word in self._split_match():
|
||||
search_result = re.search(
|
||||
r"\b{}\b".format(word), text, **search_kwargs)
|
||||
if not search_result:
|
||||
return False
|
||||
return True
|
||||
|
||||
if self.matching_algorithm == self.MATCH_ANY:
|
||||
for word in self._split_match():
|
||||
if re.search(r"\b{}\b".format(word), text, **search_kwargs):
|
||||
return True
|
||||
return False
|
||||
|
||||
if self.matching_algorithm == self.MATCH_LITERAL:
|
||||
return bool(re.search(
|
||||
r"\b{}\b".format(self.match), text, **search_kwargs))
|
||||
|
||||
if self.matching_algorithm == self.MATCH_REGEX:
|
||||
return bool(re.search(
|
||||
re.compile(self.match, **search_kwargs), text))
|
||||
|
||||
if self.matching_algorithm == self.MATCH_FUZZY:
|
||||
match = re.sub(r'[^\w\s]', '', self.match)
|
||||
text = re.sub(r'[^\w\s]', '', text)
|
||||
if self.is_insensitive:
|
||||
match = match.lower()
|
||||
text = text.lower()
|
||||
|
||||
return True if fuzz.partial_ratio(match, text) >= 90 else False
|
||||
|
||||
raise NotImplementedError("Unsupported matching algorithm")
|
||||
|
||||
def _split_match(self):
|
||||
"""
|
||||
Splits the match to individual keywords, getting rid of unnecessary
|
||||
spaces and grouping quoted words together.
|
||||
|
||||
Example:
|
||||
' some random words "with quotes " and spaces'
|
||||
==>
|
||||
["some", "random", "words", "with\s+quotes", "and", "spaces"]
|
||||
"""
|
||||
findterms = re.compile(r'"([^"]+)"|(\S+)').findall
|
||||
normspace = re.compile(r"\s+").sub
|
||||
return [
|
||||
normspace(" ", (t[0] or t[1]).strip()).replace(" ", r"\s+")
|
||||
for t in findterms(self.match)
|
||||
]
|
||||
|
||||
def save(self, *args, **kwargs):
|
||||
|
||||
self.match = self.match.lower()
|
||||
|
||||
if not self.slug:
|
||||
self.slug = slugify(self.name)
|
||||
|
||||
|
@ -16,15 +16,17 @@ def logger(message, group):
|
||||
logging.getLogger(__name__).debug(message, extra={"group": group})
|
||||
|
||||
|
||||
classifier = None
|
||||
classifier = DocumentClassifier()
|
||||
|
||||
|
||||
def classify_document(sender, document=None, logging_group=None, **kwargs):
|
||||
global classifier
|
||||
if classifier is None:
|
||||
classifier = DocumentClassifier.load_classifier()
|
||||
try:
|
||||
classifier.reload()
|
||||
classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_type=True)
|
||||
except FileNotFoundError:
|
||||
logging.getLogger(__name__).fatal("Cannot classify document, classifier model file was not found.")
|
||||
|
||||
classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_type=True)
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user