Individual doc chat

[ci skip]
This commit is contained in:
shamoon 2025-04-24 23:56:51 -07:00
parent a794008649
commit 74102a8c30
No known key found for this signature in database
2 changed files with 38 additions and 1 deletions

View File

@ -172,6 +172,7 @@ from documents.templating.filepath import validate_filepath_template_and_render
from paperless import version
from paperless.ai.ai_classifier import get_ai_document_classification
from paperless.ai.chat import chat_with_documents
from paperless.ai.chat import chat_with_single_document
from paperless.ai.matching import extract_unmatched_names
from paperless.ai.matching import match_correspondents_by_name
from paperless.ai.matching import match_document_types_by_name
@ -1142,7 +1143,15 @@ class DocumentViewSet(
return HttpResponseBadRequest("AI is required for this feature")
question = request.data["q"]
result = chat_with_documents(question, request.user)
doc_id = request.data.get("document_id", None)
if doc_id:
document = Document.objects.get(id=doc_id)
if not has_perms_owner_aware(request.user, "view_document", document):
return HttpResponseForbidden("Insufficient permissions")
result = chat_with_single_document(document, question, request.user)
else:
result = chat_with_documents(question, request.user)
return Response({"answer": result})

View File

@ -1,10 +1,12 @@
import logging
from django.contrib.auth.models import User
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import RetrieverQueryEngine
from paperless.ai.client import AIClient
from paperless.ai.indexing import get_document_retriever
from paperless.ai.indexing import load_index
logger = logging.getLogger("paperless.ai.chat")
@ -22,3 +24,29 @@ def chat_with_documents(prompt: str, user: User) -> str:
response = query_engine.query(prompt)
logger.debug("Document chat response: %s", response)
return str(response)
def chat_with_single_document(document, question: str, user):
index = load_index()
# Filter only the node(s) belonging to this doc
nodes = [
node
for node in index.docstore.docs.values()
if node.metadata.get("document_id") == str(document.id)
]
if not nodes:
raise Exception("This document is not indexed yet.")
local_index = VectorStoreIndex.from_documents(nodes)
client = AIClient()
engine = RetrieverQueryEngine.from_args(
retriever=local_index.as_retriever(similarity_top_k=3),
llm=client.llm,
)
response = engine.query(question)
return str(response)