Merge branch 'dev' into feature-ocrmypdf

This commit is contained in:
jonaswinkler
2020-11-26 18:40:01 +01:00
9 changed files with 520 additions and 314 deletions

View File

@@ -6,7 +6,8 @@ import re
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
from sklearn.utils.multiclass import type_of_target
from documents.models import Document, MatchingModel
from paperless import settings
@@ -27,7 +28,7 @@ def preprocess_content(content):
class DocumentClassifier(object):
FORMAT_VERSION = 5
FORMAT_VERSION = 6
def __init__(self):
# mtime of the model file on disk. used to prevent reloading when
@@ -54,6 +55,8 @@ class DocumentClassifier(object):
"Cannor load classifier, incompatible versions.")
else:
if self.classifier_version > 0:
# Don't be confused by this check. It's simply here
# so that we wont log anything on initial reload.
logger.info("Classifier updated on disk, "
"reloading classifier models")
self.data_hash = pickle.load(f)
@@ -122,9 +125,14 @@ class DocumentClassifier(object):
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
num_tags = len(labels_tags_unique)
# substract 1 since -1 (null) is also part of the classes.
num_correspondents = len(set(labels_correspondent)) - 1
num_document_types = len(set(labels_document_type)) - 1
# union with {-1} accounts for cases where all documents have
# correspondents and types assigned, so -1 isnt part of labels_x, which
# it usually is.
num_correspondents = len(set(labels_correspondent) | {-1}) - 1
num_document_types = len(set(labels_document_type) | {-1}) - 1
logging.getLogger(__name__).debug(
"{} documents, {} tag(s), {} correspondent(s), "
@@ -145,12 +153,23 @@ class DocumentClassifier(object):
)
data_vectorized = self.data_vectorizer.fit_transform(data)
self.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
# Step 3: train the classifiers
if num_tags > 0:
logging.getLogger(__name__).debug("Training tags classifier...")
if num_tags == 1:
# Special case where only one tag has auto:
# Fallback to binary classification.
labels_tags = [label[0] if len(label) == 1 else -1
for label in labels_tags]
self.tags_binarizer = LabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(
labels_tags).ravel()
else:
self.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(
labels_tags)
self.tags_classifier = MLPClassifier(tol=0.01)
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
@@ -222,6 +241,16 @@ class DocumentClassifier(object):
X = self.data_vectorizer.transform([preprocess_content(content)])
y = self.tags_classifier.predict(X)
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
return tags_ids
if type_of_target(y).startswith('multilabel'):
# the usual case when there are multiple tags.
return list(tags_ids)
elif type_of_target(y) == 'binary' and tags_ids != -1:
# This is for when we have binary classification with only one
# tag and the result is to assign this tag.
return [tags_ids]
else:
# Usually binary as well with -1 as the result, but we're
# going to catch everything else here as well.
return []
else:
return []

View File

@@ -1,11 +1,11 @@
import logging
import os
from time import sleep
from django.conf import settings
from django.core.management.base import BaseCommand
from django_q.tasks import async_task
from watchdog.events import FileSystemEventHandler
from watchdog.observers import Observer
from watchdog.observers.polling import PollingObserver
try:
@@ -13,25 +13,54 @@ try:
except ImportError:
INotify = flags = None
logger = logging.getLogger(__name__)
def _consume(file):
try:
if os.path.isfile(file):
async_task("documents.tasks.consume_file",
file,
task_name=os.path.basename(file)[:100])
else:
logger.debug(
f"Not consuming file {file}: File has moved.")
except Exception as e:
# Catch all so that the consumer won't crash.
# This is also what the test case is listening for to check for
# errors.
logger.error(
"Error while consuming document: {}".format(e))
def _consume_wait_unmodified(file, num_tries=20, wait_time=1):
mtime = -1
current_try = 0
while current_try < num_tries:
try:
new_mtime = os.stat(file).st_mtime
except FileNotFoundError:
logger.debug(f"File {file} moved while waiting for it to remain "
f"unmodified.")
return
if new_mtime == mtime:
_consume(file)
return
mtime = new_mtime
sleep(wait_time)
current_try += 1
logger.error(f"Timeout while waiting on file {file} to remain unmodified.")
class Handler(FileSystemEventHandler):
def _consume(self, file):
if os.path.isfile(file):
try:
async_task("documents.tasks.consume_file",
file,
task_name=os.path.basename(file)[:100])
except Exception as e:
# Catch all so that the consumer won't crash.
logging.getLogger(__name__).error(
"Error while consuming document: {}".format(e))
def on_created(self, event):
self._consume(event.src_path)
_consume_wait_unmodified(event.src_path)
def on_moved(self, event):
self._consume(event.src_path)
_consume_wait_unmodified(event.dest_path)
class Command(BaseCommand):
@@ -40,12 +69,15 @@ class Command(BaseCommand):
consumption directory.
"""
# This is here primarily for the tests and is irrelevant in production.
stop_flag = False
def __init__(self, *args, **kwargs):
self.verbosity = 0
self.logger = logging.getLogger(__name__)
BaseCommand.__init__(self, *args, **kwargs)
self.observer = None
def add_arguments(self, parser):
parser.add_argument(
@@ -54,38 +86,60 @@ class Command(BaseCommand):
nargs="?",
help="The consumption directory."
)
parser.add_argument(
"--oneshot",
action="store_true",
help="Run only once."
)
def handle(self, *args, **options):
self.verbosity = options["verbosity"]
directory = options["directory"]
logging.getLogger(__name__).info(
"Starting document consumer at {}".format(
directory
)
)
f"Starting document consumer at {directory}")
# Consume all files as this is not done initially by the watchdog
for entry in os.scandir(directory):
if entry.is_file():
async_task("documents.tasks.consume_file",
entry.path,
task_name=os.path.basename(entry.path)[:100])
# Start the watchdog. Woof!
if settings.CONSUMER_POLLING > 0:
logging.getLogger(__name__).info(
"Using polling instead of file system notifications.")
observer = PollingObserver(timeout=settings.CONSUMER_POLLING)
if options["oneshot"]:
return
if settings.CONSUMER_POLLING == 0 and INotify:
self.handle_inotify(directory)
else:
observer = Observer()
event_handler = Handler()
observer.schedule(event_handler, directory, recursive=True)
observer.start()
self.handle_polling(directory)
logger.debug("Consumer exiting.")
def handle_polling(self, directory):
logging.getLogger(__name__).info(
f"Polling directory for changes: {directory}")
self.observer = PollingObserver(timeout=settings.CONSUMER_POLLING)
self.observer.schedule(Handler(), directory, recursive=False)
self.observer.start()
try:
while observer.is_alive():
observer.join(1)
while self.observer.is_alive():
self.observer.join(1)
if self.stop_flag:
self.observer.stop()
except KeyboardInterrupt:
observer.stop()
observer.join()
self.observer.stop()
self.observer.join()
def handle_inotify(self, directory):
logging.getLogger(__name__).info(
f"Using inotify to watch directory for changes: {directory}")
inotify = INotify()
inotify.add_watch(directory, flags.CLOSE_WRITE | flags.MOVED_TO)
try:
while not self.stop_flag:
for event in inotify.read(timeout=1000, read_delay=1000):
file = os.path.join(directory, event.name)
if os.path.isfile(file):
_consume(file)
except KeyboardInterrupt:
pass

Binary file not shown.

Binary file not shown.

View File

@@ -5,6 +5,7 @@ from unittest import mock
from django.contrib.auth.models import User
from django.test import override_settings
from pathvalidate import ValidationError
from rest_framework.test import APITestCase
from documents.models import Document, Correspondent, DocumentType, Tag
@@ -215,3 +216,41 @@ class DocumentApiTest(APITestCase):
self.assertEqual(response.status_code, 200)
self.assertEqual(response.data['documents_total'], 3)
self.assertEqual(response.data['documents_inbox'], 1)
@mock.patch("documents.forms.async_task")
def test_upload(self, m):
with open(os.path.join(os.path.dirname(__file__), "samples", "simple.pdf"), "rb") as f:
response = self.client.post("/api/documents/post_document/", {"document": f})
self.assertEqual(response.status_code, 200)
m.assert_called_once()
self.assertEqual(m.call_args.kwargs['override_filename'], "simple.pdf")
@mock.patch("documents.forms.async_task")
def test_upload_invalid_form(self, m):
with open(os.path.join(os.path.dirname(__file__), "samples", "simple.pdf"), "rb") as f:
response = self.client.post("/api/documents/post_document/", {"documenst": f})
self.assertEqual(response.status_code, 400)
m.assert_not_called()
@mock.patch("documents.forms.async_task")
def test_upload_invalid_file(self, m):
with open(os.path.join(os.path.dirname(__file__), "samples", "simple.zip"), "rb") as f:
response = self.client.post("/api/documents/post_document/", {"document": f})
self.assertEqual(response.status_code, 400)
m.assert_not_called()
@mock.patch("documents.forms.async_task")
@mock.patch("documents.forms.validate_filename")
def test_upload_invalid_filename(self, validate_filename, async_task):
validate_filename.side_effect = ValidationError()
with open(os.path.join(os.path.dirname(__file__), "samples", "simple.pdf"), "rb") as f:
response = self.client.post("/api/documents/post_document/", {"document": f})
self.assertEqual(response.status_code, 400)
async_task.assert_not_called()

View File

@@ -1,8 +1,10 @@
import tempfile
from time import sleep
from unittest import mock
from django.test import TestCase, override_settings
from documents.classifier import DocumentClassifier
from documents.classifier import DocumentClassifier, IncompatibleClassifierVersionError
from documents.models import Correspondent, Document, Tag, DocumentType
@@ -15,10 +17,12 @@ class TestClassifier(TestCase):
def generate_test_data(self):
self.c1 = Correspondent.objects.create(name="c1", matching_algorithm=Correspondent.MATCH_AUTO)
self.c2 = Correspondent.objects.create(name="c2")
self.c3 = Correspondent.objects.create(name="c3", matching_algorithm=Correspondent.MATCH_AUTO)
self.t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
self.t2 = Tag.objects.create(name="t2", matching_algorithm=Tag.MATCH_ANY, pk=34, is_inbox_tag=True)
self.t3 = Tag.objects.create(name="t3", matching_algorithm=Tag.MATCH_AUTO, pk=45)
self.dt = DocumentType.objects.create(name="dt", matching_algorithm=DocumentType.MATCH_AUTO)
self.dt2 = DocumentType.objects.create(name="dt2", matching_algorithm=DocumentType.MATCH_AUTO)
self.doc1 = Document.objects.create(title="doc1", content="this is a document from c1", correspondent=self.c1, checksum="A", document_type=self.dt)
self.doc2 = Document.objects.create(title="doc1", content="this is another document, but from c2", correspondent=self.c2, checksum="B")
@@ -59,8 +63,8 @@ class TestClassifier(TestCase):
self.classifier.train()
self.assertEqual(self.classifier.predict_correspondent(self.doc1.content), self.c1.pk)
self.assertEqual(self.classifier.predict_correspondent(self.doc2.content), None)
self.assertTupleEqual(self.classifier.predict_tags(self.doc1.content), (self.t1.pk,))
self.assertTupleEqual(self.classifier.predict_tags(self.doc2.content), (self.t1.pk, self.t3.pk))
self.assertListEqual(self.classifier.predict_tags(self.doc1.content), [self.t1.pk])
self.assertListEqual(self.classifier.predict_tags(self.doc2.content), [self.t1.pk, self.t3.pk])
self.assertEqual(self.classifier.predict_document_type(self.doc1.content), self.dt.pk)
self.assertEqual(self.classifier.predict_document_type(self.doc2.content), None)
@@ -71,6 +75,42 @@ class TestClassifier(TestCase):
self.assertTrue(self.classifier.train())
self.assertFalse(self.classifier.train())
def testVersionIncreased(self):
self.generate_test_data()
self.assertTrue(self.classifier.train())
self.assertFalse(self.classifier.train())
classifier2 = DocumentClassifier()
current_ver = DocumentClassifier.FORMAT_VERSION
with mock.patch("documents.classifier.DocumentClassifier.FORMAT_VERSION", current_ver+1):
# assure that we won't load old classifiers.
self.assertRaises(IncompatibleClassifierVersionError, self.classifier.reload)
self.classifier.save_classifier()
# assure that we can load the classifier after saving it.
classifier2.reload()
def testReload(self):
self.generate_test_data()
self.assertTrue(self.classifier.train())
self.classifier.save_classifier()
classifier2 = DocumentClassifier()
classifier2.reload()
v1 = classifier2.classifier_version
# change the classifier after some time.
sleep(1)
self.classifier.save_classifier()
classifier2.reload()
v2 = classifier2.classifier_version
self.assertNotEqual(v1, v2)
@override_settings(DATA_DIR=tempfile.mkdtemp())
def testSaveClassifier(self):
@@ -83,3 +123,112 @@ class TestClassifier(TestCase):
new_classifier = DocumentClassifier()
new_classifier.reload()
self.assertFalse(new_classifier.train())
def test_one_correspondent_predict(self):
c1 = Correspondent.objects.create(name="c1", matching_algorithm=Correspondent.MATCH_AUTO)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", correspondent=c1, checksum="A")
self.classifier.train()
self.assertEqual(self.classifier.predict_correspondent(doc1.content), c1.pk)
def test_one_correspondent_predict_manydocs(self):
c1 = Correspondent.objects.create(name="c1", matching_algorithm=Correspondent.MATCH_AUTO)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", correspondent=c1, checksum="A")
doc2 = Document.objects.create(title="doc2", content="this is a document from noone", checksum="B")
self.classifier.train()
self.assertEqual(self.classifier.predict_correspondent(doc1.content), c1.pk)
self.assertIsNone(self.classifier.predict_correspondent(doc2.content))
def test_one_type_predict(self):
dt = DocumentType.objects.create(name="dt", matching_algorithm=DocumentType.MATCH_AUTO)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1",
checksum="A", document_type=dt)
self.classifier.train()
self.assertEqual(self.classifier.predict_document_type(doc1.content), dt.pk)
def test_one_type_predict_manydocs(self):
dt = DocumentType.objects.create(name="dt", matching_algorithm=DocumentType.MATCH_AUTO)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1",
checksum="A", document_type=dt)
doc2 = Document.objects.create(title="doc1", content="this is a document from c2",
checksum="B")
self.classifier.train()
self.assertEqual(self.classifier.predict_document_type(doc1.content), dt.pk)
self.assertIsNone(self.classifier.predict_document_type(doc2.content))
def test_one_tag_predict(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", checksum="A")
doc1.tags.add(t1)
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc1.content), [t1.pk])
def test_one_tag_predict_unassigned(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", checksum="A")
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc1.content), [])
def test_two_tags_predict_singledoc(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
t2 = Tag.objects.create(name="t2", matching_algorithm=Tag.MATCH_AUTO, pk=121)
doc4 = Document.objects.create(title="doc1", content="this is a document from c4", checksum="D")
doc4.tags.add(t1)
doc4.tags.add(t2)
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc4.content), [t1.pk, t2.pk])
def test_two_tags_predict(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
t2 = Tag.objects.create(name="t2", matching_algorithm=Tag.MATCH_AUTO, pk=121)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", checksum="A")
doc2 = Document.objects.create(title="doc1", content="this is a document from c2", checksum="B")
doc3 = Document.objects.create(title="doc1", content="this is a document from c3", checksum="C")
doc4 = Document.objects.create(title="doc1", content="this is a document from c4", checksum="D")
doc1.tags.add(t1)
doc2.tags.add(t2)
doc4.tags.add(t1)
doc4.tags.add(t2)
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc1.content), [t1.pk])
self.assertListEqual(self.classifier.predict_tags(doc2.content), [t2.pk])
self.assertListEqual(self.classifier.predict_tags(doc3.content), [])
self.assertListEqual(self.classifier.predict_tags(doc4.content), [t1.pk, t2.pk])
def test_one_tag_predict_multi(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", checksum="A")
doc2 = Document.objects.create(title="doc2", content="this is a document from c2", checksum="B")
doc1.tags.add(t1)
doc2.tags.add(t1)
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc1.content), [t1.pk])
self.assertListEqual(self.classifier.predict_tags(doc2.content), [t1.pk])
def test_one_tag_predict_multi_2(self):
t1 = Tag.objects.create(name="t1", matching_algorithm=Tag.MATCH_AUTO, pk=12)
doc1 = Document.objects.create(title="doc1", content="this is a document from c1", checksum="A")
doc2 = Document.objects.create(title="doc2", content="this is a document from c2", checksum="B")
doc1.tags.add(t1)
self.classifier.train()
self.assertListEqual(self.classifier.predict_tags(doc1.content), [t1.pk])
self.assertListEqual(self.classifier.predict_tags(doc2.content), [])

View File

@@ -0,0 +1,188 @@
import filecmp
import os
import shutil
import tempfile
from threading import Thread
from time import sleep
from unittest import mock
from django.conf import settings
from django.test import TestCase, override_settings
from documents.consumer import ConsumerError
from documents.management.commands import document_consumer
class ConsumerThread(Thread):
def __init__(self):
super().__init__()
self.cmd = document_consumer.Command()
def run(self) -> None:
self.cmd.handle(directory=settings.CONSUMPTION_DIR, oneshot=False)
def stop(self):
# Consumer checks this every second.
self.cmd.stop_flag = True
def chunked(size, source):
for i in range(0, len(source), size):
yield source[i:i+size]
class TestConsumer(TestCase):
sample_file = os.path.join(os.path.dirname(__file__), "samples", "simple.pdf")
def setUp(self) -> None:
patcher = mock.patch("documents.management.commands.document_consumer.async_task")
self.task_mock = patcher.start()
self.addCleanup(patcher.stop)
self.consume_dir = tempfile.mkdtemp()
override_settings(CONSUMPTION_DIR=self.consume_dir).enable()
def t_start(self):
self.t = ConsumerThread()
self.t.start()
# give the consumer some time to do initial work
sleep(1)
def tearDown(self) -> None:
if self.t:
self.t.stop()
def wait_for_task_mock_call(self):
n = 0
while n < 100:
if self.task_mock.call_count > 0:
# give task_mock some time to finish and raise errors
sleep(1)
return
n += 1
sleep(0.1)
self.fail("async_task was never called")
# A bogus async_task that will simply check the file for
# completeness and raise an exception otherwise.
def bogus_task(self, func, filename, **kwargs):
eq = filecmp.cmp(filename, self.sample_file, shallow=False)
if not eq:
print("Consumed an INVALID file.")
raise ConsumerError("Incomplete File READ FAILED")
else:
print("Consumed a perfectly valid file.")
def slow_write_file(self, target, incomplete=False):
with open(self.sample_file, 'rb') as f:
pdf_bytes = f.read()
if incomplete:
pdf_bytes = pdf_bytes[:len(pdf_bytes) - 100]
with open(target, 'wb') as f:
# this will take 2 seconds, since the file is about 20k.
print("Start writing file.")
for b in chunked(1000, pdf_bytes):
f.write(b)
sleep(0.1)
print("file completed.")
def test_consume_file(self):
self.t_start()
f = os.path.join(self.consume_dir, "my_file.pdf")
shutil.copy(self.sample_file, f)
self.wait_for_task_mock_call()
self.task_mock.assert_called_once()
self.assertEqual(self.task_mock.call_args.args[1], f)
@override_settings(CONSUMER_POLLING=1)
def test_consume_file_polling(self):
self.test_consume_file()
def test_consume_existing_file(self):
f = os.path.join(self.consume_dir, "my_file.pdf")
shutil.copy(self.sample_file, f)
self.t_start()
self.task_mock.assert_called_once()
self.assertEqual(self.task_mock.call_args.args[1], f)
@override_settings(CONSUMER_POLLING=1)
def test_consume_existing_file_polling(self):
self.test_consume_existing_file()
@mock.patch("documents.management.commands.document_consumer.logger.error")
def test_slow_write_pdf(self, error_logger):
self.task_mock.side_effect = self.bogus_task
self.t_start()
fname = os.path.join(self.consume_dir, "my_file.pdf")
self.slow_write_file(fname)
self.wait_for_task_mock_call()
error_logger.assert_not_called()
self.task_mock.assert_called_once()
self.assertEqual(self.task_mock.call_args.args[1], fname)
@override_settings(CONSUMER_POLLING=1)
def test_slow_write_pdf_polling(self):
self.test_slow_write_pdf()
@mock.patch("documents.management.commands.document_consumer.logger.error")
def test_slow_write_and_move(self, error_logger):
self.task_mock.side_effect = self.bogus_task
self.t_start()
fname = os.path.join(self.consume_dir, "my_file.~df")
fname2 = os.path.join(self.consume_dir, "my_file.pdf")
self.slow_write_file(fname)
shutil.move(fname, fname2)
self.wait_for_task_mock_call()
self.task_mock.assert_called_once()
self.assertEqual(self.task_mock.call_args.args[1], fname2)
error_logger.assert_not_called()
@override_settings(CONSUMER_POLLING=1)
def test_slow_write_and_move_polling(self):
self.test_slow_write_and_move()
@mock.patch("documents.management.commands.document_consumer.logger.error")
def test_slow_write_incomplete(self, error_logger):
self.task_mock.side_effect = self.bogus_task
self.t_start()
fname = os.path.join(self.consume_dir, "my_file.pdf")
self.slow_write_file(fname, incomplete=True)
self.wait_for_task_mock_call()
self.task_mock.assert_called_once()
self.assertEqual(self.task_mock.call_args.args[1], fname)
# assert that we have an error logged with this invalid file.
error_logger.assert_called_once()
@override_settings(CONSUMER_POLLING=1)
def test_slow_write_incomplete_polling(self):
self.test_slow_write_incomplete()