Fixhancement: auto-queue llm index if needed (#11891)

This commit is contained in:
shamoon
2026-01-27 13:48:17 -08:00
committed by GitHub
parent 02002620d2
commit d294508982
2 changed files with 102 additions and 0 deletions

View File

@@ -1,11 +1,14 @@
import logging
import shutil
from datetime import timedelta
from pathlib import Path
import faiss
import llama_index.core.settings as llama_settings
import tqdm
from celery import states
from django.conf import settings
from django.utils import timezone
from llama_index.core import Document as LlamaDocument
from llama_index.core import StorageContext
from llama_index.core import VectorStoreIndex
@@ -21,6 +24,7 @@ from llama_index.core.text_splitter import TokenTextSplitter
from llama_index.vector_stores.faiss import FaissVectorStore
from documents.models import Document
from documents.models import PaperlessTask
from paperless_ai.embedding import build_llm_index_text
from paperless_ai.embedding import get_embedding_dim
from paperless_ai.embedding import get_embedding_model
@@ -28,6 +32,29 @@ from paperless_ai.embedding import get_embedding_model
logger = logging.getLogger("paperless_ai.indexing")
def queue_llm_index_update_if_needed(*, rebuild: bool, reason: str) -> bool:
from documents.tasks import llmindex_index
has_running = PaperlessTask.objects.filter(
task_name=PaperlessTask.TaskName.LLMINDEX_UPDATE,
status__in=[states.PENDING, states.STARTED],
).exists()
has_recent = PaperlessTask.objects.filter(
task_name=PaperlessTask.TaskName.LLMINDEX_UPDATE,
date_created__gte=(timezone.now() - timedelta(minutes=5)),
).exists()
if has_running or has_recent:
return False
llmindex_index.delay(rebuild=rebuild, scheduled=False, auto=True)
logger.warning(
"Queued LLM index update%s: %s",
" (rebuild)" if rebuild else "",
reason,
)
return True
def get_or_create_storage_context(*, rebuild=False):
"""
Loads or creates the StorageContext (vector store, docstore, index store).
@@ -93,6 +120,10 @@ def load_or_build_index(nodes=None):
except ValueError as e:
logger.warning("Failed to load index from storage: %s", e)
if not nodes:
queue_llm_index_update_if_needed(
rebuild=vector_store_file_exists(),
reason="LLM index missing or invalid while loading.",
)
logger.info("No nodes provided for index creation.")
raise
return VectorStoreIndex(
@@ -250,6 +281,13 @@ def query_similar_documents(
"""
Runs a similarity query and returns top-k similar Document objects.
"""
if not vector_store_file_exists():
queue_llm_index_update_if_needed(
rebuild=False,
reason="LLM index not found for similarity query.",
)
return []
index = load_or_build_index()
# constrain only the node(s) that match the document IDs, if given