mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-07-16 17:25:11 -05:00
Compare commits
6 Commits
3c75deed80
...
d960aa2699
Author | SHA1 | Date | |
---|---|---|---|
![]() |
d960aa2699 | ||
![]() |
0fd6d40b37 | ||
![]() |
c9f724d417 | ||
![]() |
4b2c986cb3 | ||
![]() |
e2a2705d23 | ||
![]() |
ea63481cd4 |
@ -1708,3 +1708,23 @@ password. All of these options come from their similarly-named [Django settings]
|
||||
#### [`PAPERLESS_EMAIL_USE_SSL=<bool>`](#PAPERLESS_EMAIL_USE_SSL) {#PAPERLESS_EMAIL_USE_SSL}
|
||||
|
||||
: Defaults to false.
|
||||
|
||||
## Remote OCR
|
||||
|
||||
#### [`PAPERLESS_REMOTE_OCR_ENGINE=<str>`](#PAPERLESS_REMOTE_OCR_ENGINE) {#PAPERLESS_REMOTE_OCR_ENGINE}
|
||||
|
||||
: The remote OCR engine to use. Currently only Azure AI is supported as "azureai".
|
||||
|
||||
Defaults to None, which disables remote OCR.
|
||||
|
||||
#### [`PAPERLESS_REMOTE_OCR_API_KEY=<str>`](#PAPERLESS_REMOTE_OCR_API_KEY) {#PAPERLESS_REMOTE_OCR_API_KEY}
|
||||
|
||||
: The API key to use for the remote OCR engine.
|
||||
|
||||
Defaults to None.
|
||||
|
||||
#### [`PAPERLESS_REMOTE_OCR_ENDPOINT=<str>`](#PAPERLESS_REMOTE_OCR_ENDPOINT) {#PAPERLESS_REMOTE_OCR_ENDPOINT}
|
||||
|
||||
: The endpoint to use for the remote OCR engine. This is required for Azure AI.
|
||||
|
||||
Defaults to None.
|
||||
|
@ -841,6 +841,18 @@ how regularly you intend to scan documents and use paperless.
|
||||
performed the task associated with the document, move it to the
|
||||
inbox.
|
||||
|
||||
## Remove OCR
|
||||
|
||||
!!! important
|
||||
|
||||
This feature is disabled by default and will always remain strictly "opt-in".
|
||||
|
||||
Paperless-ngx supports performing OCR on documents using remote services. At the moment, this is limited to
|
||||
[Microsoft's Azure "Document Intelligence" service](https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence).
|
||||
This is of course a paid service (with a free tier) which requires an Azure account and subscription. Azure AI is not affiliated with
|
||||
Paperless-ngx in any way. When enabled, Paperless-ngx will automatically send appropriate documents to Azure for OCR processing, bypassing
|
||||
the local OCR engine. See the [configuration](configuration.md#PAPERLESS_REMOTE_OCR_ENGINE) options for more details.
|
||||
|
||||
## Architecture
|
||||
|
||||
Paperless-ngx consists of the following components:
|
||||
|
@ -15,6 +15,7 @@ classifiers = [
|
||||
# This will allow testing to not install a webserver, mysql, etc
|
||||
|
||||
dependencies = [
|
||||
"azure-ai-documentintelligence>=1.0.2",
|
||||
"bleach~=6.2.0",
|
||||
"celery[redis]~=5.5.1",
|
||||
"channels~=4.2",
|
||||
|
@ -317,6 +317,7 @@ INSTALLED_APPS = [
|
||||
"paperless_tesseract.apps.PaperlessTesseractConfig",
|
||||
"paperless_text.apps.PaperlessTextConfig",
|
||||
"paperless_mail.apps.PaperlessMailConfig",
|
||||
"paperless_remote.apps.PaperlessRemoteParserConfig",
|
||||
"django.contrib.admin",
|
||||
"rest_framework",
|
||||
"rest_framework.authtoken",
|
||||
@ -1277,3 +1278,11 @@ OUTLOOK_OAUTH_ENABLED = bool(
|
||||
and OUTLOOK_OAUTH_CLIENT_ID
|
||||
and OUTLOOK_OAUTH_CLIENT_SECRET,
|
||||
)
|
||||
|
||||
###############################################################################
|
||||
# Remote Parser #
|
||||
###############################################################################
|
||||
|
||||
REMOTE_OCR_ENGINE = os.getenv("PAPERLESS_REMOTE_OCR_ENGINE")
|
||||
REMOTE_OCR_API_KEY = os.getenv("PAPERLESS_REMOTE_OCR_API_KEY")
|
||||
REMOTE_OCR_ENDPOINT = os.getenv("PAPERLESS_REMOTE_OCR_ENDPOINT")
|
||||
|
4
src/paperless_remote/__init__.py
Normal file
4
src/paperless_remote/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
# this is here so that django finds the checks.
|
||||
from paperless_remote.checks import check_remote_parser_configured
|
||||
|
||||
__all__ = ["check_remote_parser_configured"]
|
14
src/paperless_remote/apps.py
Normal file
14
src/paperless_remote/apps.py
Normal file
@ -0,0 +1,14 @@
|
||||
from django.apps import AppConfig
|
||||
|
||||
from paperless_remote.signals import remote_consumer_declaration
|
||||
|
||||
|
||||
class PaperlessRemoteParserConfig(AppConfig):
|
||||
name = "paperless_remote"
|
||||
|
||||
def ready(self):
|
||||
from documents.signals import document_consumer_declaration
|
||||
|
||||
document_consumer_declaration.connect(remote_consumer_declaration)
|
||||
|
||||
AppConfig.ready(self)
|
15
src/paperless_remote/checks.py
Normal file
15
src/paperless_remote/checks.py
Normal file
@ -0,0 +1,15 @@
|
||||
from django.conf import settings
|
||||
from django.core.checks import Error
|
||||
from django.core.checks import register
|
||||
|
||||
|
||||
@register()
|
||||
def check_remote_parser_configured(app_configs, **kwargs):
|
||||
if settings.REMOTE_OCR_ENGINE == "azureai" and not settings.REMOTE_OCR_ENDPOINT:
|
||||
return [
|
||||
Error(
|
||||
"Azure AI remote parser requires endpoint to be configured.",
|
||||
),
|
||||
]
|
||||
|
||||
return []
|
108
src/paperless_remote/parsers.py
Normal file
108
src/paperless_remote/parsers.py
Normal file
@ -0,0 +1,108 @@
|
||||
from pathlib import Path
|
||||
|
||||
from django.conf import settings
|
||||
|
||||
from paperless_tesseract.parsers import RasterisedDocumentParser
|
||||
|
||||
|
||||
class RemoteEngineConfig:
|
||||
def __init__(
|
||||
self,
|
||||
engine: str,
|
||||
api_key: str | None = None,
|
||||
endpoint: str | None = None,
|
||||
):
|
||||
self.engine = engine
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
|
||||
def engine_is_valid(self):
|
||||
valid = self.engine in ["azureai"] and self.api_key is not None
|
||||
if self.engine == "azureai":
|
||||
valid = valid and self.endpoint is not None
|
||||
return valid
|
||||
|
||||
|
||||
class RemoteDocumentParser(RasterisedDocumentParser):
|
||||
"""
|
||||
This parser uses a remote ocr engine to parse documents
|
||||
"""
|
||||
|
||||
logging_name = "paperless.parsing.remote"
|
||||
|
||||
def get_settings(self) -> RemoteEngineConfig:
|
||||
"""
|
||||
This parser uses the OCR configuration settings to parse documents
|
||||
"""
|
||||
return RemoteEngineConfig(
|
||||
engine=settings.REMOTE_OCR_ENGINE,
|
||||
api_key=settings.REMOTE_OCR_API_KEY,
|
||||
endpoint=settings.REMOTE_OCR_ENDPOINT,
|
||||
)
|
||||
|
||||
def supported_mime_types(self):
|
||||
if self.settings.engine_is_valid():
|
||||
return [
|
||||
"application/pdf",
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/tiff",
|
||||
"image/bmp",
|
||||
"image/gif",
|
||||
"image/webp",
|
||||
]
|
||||
else:
|
||||
return []
|
||||
|
||||
def azure_ai_vision_parse(
|
||||
self,
|
||||
file: Path,
|
||||
) -> str | None:
|
||||
"""
|
||||
This method uses the Azure AI Vision API to parse documents
|
||||
"""
|
||||
from azure.ai.documentintelligence import DocumentIntelligenceClient
|
||||
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest
|
||||
from azure.ai.documentintelligence.models import AnalyzeOutputOption
|
||||
from azure.ai.documentintelligence.models import DocumentContentFormat
|
||||
from azure.core.credentials import AzureKeyCredential
|
||||
|
||||
client = DocumentIntelligenceClient(
|
||||
endpoint=self.settings.endpoint,
|
||||
credential=AzureKeyCredential(self.settings.api_key),
|
||||
)
|
||||
|
||||
with file.open("rb") as f:
|
||||
analyze_request = AnalyzeDocumentRequest(bytes_source=f.read())
|
||||
poller = client.begin_analyze_document(
|
||||
model_id="prebuilt-read",
|
||||
body=analyze_request,
|
||||
output_content_format=DocumentContentFormat.TEXT,
|
||||
output=[AnalyzeOutputOption.PDF], # request searchable PDF output
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
poller.wait()
|
||||
result_id = poller.details["operation_id"]
|
||||
result = poller.result()
|
||||
|
||||
# Download the PDF with embedded text
|
||||
self.archive_path = Path(self.tempdir) / "archive.pdf"
|
||||
with self.archive_path.open("wb") as f:
|
||||
for chunk in client.get_analyze_result_pdf(
|
||||
model_id="prebuilt-read",
|
||||
result_id=result_id,
|
||||
):
|
||||
f.write(chunk)
|
||||
|
||||
return result.content
|
||||
|
||||
def parse(self, document_path: Path, mime_type, file_name=None):
|
||||
if not self.settings.engine_is_valid():
|
||||
self.log.warning(
|
||||
"No valid remote parser engine is configured, content will be empty.",
|
||||
)
|
||||
self.text = ""
|
||||
return
|
||||
elif self.settings.engine == "azureai":
|
||||
self.text = self.azure_ai_vision_parse(document_path)
|
18
src/paperless_remote/signals.py
Normal file
18
src/paperless_remote/signals.py
Normal file
@ -0,0 +1,18 @@
|
||||
def get_parser(*args, **kwargs):
|
||||
from paperless_remote.parsers import RemoteDocumentParser
|
||||
|
||||
return RemoteDocumentParser(*args, **kwargs)
|
||||
|
||||
|
||||
def get_supported_mime_types():
|
||||
from paperless_remote.parsers import RemoteDocumentParser
|
||||
|
||||
return RemoteDocumentParser(None).supported_mime_types()
|
||||
|
||||
|
||||
def remote_consumer_declaration(sender, **kwargs):
|
||||
return {
|
||||
"parser": get_parser,
|
||||
"weight": 5,
|
||||
"mime_types": get_supported_mime_types(),
|
||||
}
|
0
src/paperless_remote/tests/__init__.py
Normal file
0
src/paperless_remote/tests/__init__.py
Normal file
BIN
src/paperless_remote/tests/samples/simple-digital.pdf
Normal file
BIN
src/paperless_remote/tests/samples/simple-digital.pdf
Normal file
Binary file not shown.
29
src/paperless_remote/tests/test_checks.py
Normal file
29
src/paperless_remote/tests/test_checks.py
Normal file
@ -0,0 +1,29 @@
|
||||
from django.test import TestCase
|
||||
from django.test import override_settings
|
||||
|
||||
from paperless_remote import check_remote_parser_configured
|
||||
|
||||
|
||||
class TestChecks(TestCase):
|
||||
@override_settings(REMOTE_OCR_ENGINE=None)
|
||||
def test_no_engine(self):
|
||||
msgs = check_remote_parser_configured(None)
|
||||
self.assertEqual(len(msgs), 0)
|
||||
|
||||
@override_settings(REMOTE_OCR_ENGINE="azureai")
|
||||
@override_settings(REMOTE_OCR_API_KEY="somekey")
|
||||
@override_settings(REMOTE_OCR_ENDPOINT=None)
|
||||
def test_azure_no_endpoint(self):
|
||||
msgs = check_remote_parser_configured(None)
|
||||
self.assertEqual(len(msgs), 1)
|
||||
self.assertTrue(
|
||||
msgs[0].msg.startswith(
|
||||
"Azure AI Vision remote parser requires endpoint to be configured.",
|
||||
),
|
||||
)
|
||||
|
||||
@override_settings(REMOTE_OCR_ENGINE="something")
|
||||
@override_settings(REMOTE_OCR_API_KEY="somekey")
|
||||
def test_valid_configuration(self):
|
||||
msgs = check_remote_parser_configured(None)
|
||||
self.assertEqual(len(msgs), 0)
|
67
src/paperless_remote/tests/test_parser.py
Normal file
67
src/paperless_remote/tests/test_parser.py
Normal file
@ -0,0 +1,67 @@
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from unittest import mock
|
||||
|
||||
from django.test import TestCase
|
||||
from django.test import override_settings
|
||||
|
||||
from documents.tests.utils import DirectoriesMixin
|
||||
from documents.tests.utils import FileSystemAssertsMixin
|
||||
from paperless_remote.parsers import RemoteDocumentParser
|
||||
|
||||
|
||||
class TestParser(DirectoriesMixin, FileSystemAssertsMixin, TestCase):
|
||||
SAMPLE_FILES = Path(__file__).resolve().parent / "samples"
|
||||
|
||||
def assertContainsStrings(self, content, strings):
|
||||
# Asserts that all strings appear in content, in the given order.
|
||||
indices = []
|
||||
for s in strings:
|
||||
if s in content:
|
||||
indices.append(content.index(s))
|
||||
else:
|
||||
self.fail(f"'{s}' is not in '{content}'")
|
||||
self.assertListEqual(indices, sorted(indices))
|
||||
|
||||
@mock.patch("paperless_remote.parsers.subprocess.run")
|
||||
@mock.patch("azure.ai.documentintelligence.DocumentIntelligenceClient")
|
||||
def test_get_text_with_azure(self, mock_client_cls, mock_subprocess):
|
||||
# Arrange mock Azure client
|
||||
mock_client = mock.Mock()
|
||||
mock_client_cls.return_value = mock_client
|
||||
|
||||
# Simulate poller result and its `.details`
|
||||
mock_poller = mock.Mock()
|
||||
mock_poller.wait.return_value = None
|
||||
mock_poller.details = {"operation_id": "fake-op-id"}
|
||||
mock_client.begin_analyze_document.return_value = mock_poller
|
||||
|
||||
# Return dummy PDF bytes
|
||||
mock_client.get_analyze_result_pdf.return_value = [
|
||||
b"%PDF-",
|
||||
b"1.7 ",
|
||||
b"FAKEPDF",
|
||||
]
|
||||
|
||||
# Simulate pdftotext by writing dummy text to sidecar file
|
||||
def fake_run(cmd, *args, **kwargs):
|
||||
with Path(cmd[-1]).open("w", encoding="utf-8") as f:
|
||||
f.write("This is a test document.")
|
||||
|
||||
mock_subprocess.side_effect = fake_run
|
||||
|
||||
with override_settings(
|
||||
REMOTE_OCR_ENGINE="azureai",
|
||||
REMOTE_OCR_API_KEY="somekey",
|
||||
REMOTE_OCR_ENDPOINT="https://endpoint.cognitiveservices.azure.com",
|
||||
):
|
||||
parser = RemoteDocumentParser(uuid.uuid4())
|
||||
parser.parse(
|
||||
self.SAMPLE_FILES / "simple-digital.pdf",
|
||||
"application/pdf",
|
||||
)
|
||||
|
||||
self.assertContainsStrings(
|
||||
parser.text.strip(),
|
||||
["This is a test document."],
|
||||
)
|
39
uv.lock
generated
39
uv.lock
generated
@ -93,6 +93,34 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/af/cc/55a32a2c98022d88812b5986d2a92c4ff3ee087e83b712ebc703bba452bf/Automat-24.8.1-py3-none-any.whl", hash = "sha256:bf029a7bc3da1e2c24da2343e7598affaa9f10bf0ab63ff808566ce90551e02a", size = 42585, upload-time = "2024-08-19T17:31:56.729Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "azure-ai-documentintelligence"
|
||||
version = "1.0.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "azure-core", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "isodate", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "typing-extensions", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/44/7b/8115cd713e2caa5e44def85f2b7ebd02a74ae74d7113ba20bdd41fd6dd80/azure_ai_documentintelligence-1.0.2.tar.gz", hash = "sha256:4d75a2513f2839365ebabc0e0e1772f5601b3a8c9a71e75da12440da13b63484", size = 170940 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/75/c9ec040f23082f54ffb1977ff8f364c2d21c79a640a13d1c1809e7fd6b1a/azure_ai_documentintelligence-1.0.2-py3-none-any.whl", hash = "sha256:e1fb446abbdeccc9759d897898a0fe13141ed29f9ad11fc705f951925822ed59", size = 106005 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "azure-core"
|
||||
version = "1.33.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "requests", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "six", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "typing-extensions", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/75/aa/7c9db8edd626f1a7d99d09ef7926f6f4fb34d5f9fa00dc394afdfe8e2a80/azure_core-1.33.0.tar.gz", hash = "sha256:f367aa07b5e3005fec2c1e184b882b0b039910733907d001c20fb08ebb8c0eb9", size = 295633 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/07/b7/76b7e144aa53bd206bf1ce34fa75350472c3f69bf30e5c8c18bc9881035d/azure_core-1.33.0-py3-none-any.whl", hash = "sha256:9b5b6d0223a1d38c37500e6971118c1e0f13f54951e6893968b38910bc9cda8f", size = 207071 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "babel"
|
||||
version = "2.17.0"
|
||||
@ -1355,6 +1383,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/fc/4e5a141c3f7c7bed550ac1f69e599e92b6be449dd4677ec09f325cad0955/inotifyrecursive-0.3.5-py3-none-any.whl", hash = "sha256:7e5f4a2e1dc2bef0efa3b5f6b339c41fb4599055a2b54909d020e9e932cc8d2f", size = 8009, upload-time = "2020-11-20T12:38:46.981Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "isodate"
|
||||
version = "0.7.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/54/4d/e940025e2ce31a8ce1202635910747e5a87cc3a6a6bb2d00973375014749/isodate-0.7.2.tar.gz", hash = "sha256:4cd1aa0f43ca76f4a6c6c0292a85f40b35ec2e43e315b59f06e6d32171a953e6", size = 29705 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/15/aa/0aca39a37d3c7eb941ba736ede56d689e7be91cab5d9ca846bde3999eba6/isodate-0.7.2-py3-none-any.whl", hash = "sha256:28009937d8031054830160fce6d409ed342816b543597cece116d966c6d99e15", size = 22320 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "jinja2"
|
||||
version = "3.1.6"
|
||||
@ -1883,6 +1920,7 @@ name = "paperless-ngx"
|
||||
version = "2.16.3"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "azure-ai-documentintelligence", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "bleach", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "celery", extra = ["redis"], marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "channels", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@ -2013,6 +2051,7 @@ typing = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "azure-ai-documentintelligence", specifier = ">=1.0.2" },
|
||||
{ name = "bleach", specifier = "~=6.2.0" },
|
||||
{ name = "celery", extras = ["redis"], specifier = "~=5.5.1" },
|
||||
{ name = "channels", specifier = "~=4.2" },
|
||||
|
Loading…
x
Reference in New Issue
Block a user