import logging import os import pickle import re import warnings from collections.abc import Iterator from datetime import datetime from hashlib import sha256 from pathlib import Path from typing import Optional from django.conf import settings from django.core.cache import cache from sklearn.exceptions import InconsistentVersionWarning from documents.caching import CACHE_50_MINUTES from documents.caching import CLASSIFIER_HASH_KEY from documents.caching import CLASSIFIER_MODIFIED_KEY from documents.caching import CLASSIFIER_VERSION_KEY from documents.models import Document from documents.models import MatchingModel logger = logging.getLogger("paperless.classifier") class IncompatibleClassifierVersionError(Exception): def __init__(self, message: str, *args: object) -> None: self.message = message super().__init__(*args) class ClassifierModelCorruptError(Exception): pass def load_classifier() -> Optional["DocumentClassifier"]: if not os.path.isfile(settings.MODEL_FILE): logger.debug( "Document classification model does not exist (yet), not " "performing automatic matching.", ) return None classifier = DocumentClassifier() try: classifier.load() except IncompatibleClassifierVersionError as e: logger.info(f"Classifier version incompatible: {e.message}, will re-train") os.unlink(settings.MODEL_FILE) classifier = None except ClassifierModelCorruptError: # there's something wrong with the model file. logger.exception( "Unrecoverable error while loading document " "classification model, deleting model file.", ) os.unlink(settings.MODEL_FILE) classifier = None except OSError: logger.exception("IO error while loading document classification model") classifier = None except Exception: # pragma: no cover logger.exception("Unknown error while loading document classification model") classifier = None return classifier class DocumentClassifier: # v7 - Updated scikit-learn package version # v8 - Added storage path classifier # v9 - Changed from hashing to time/ids for re-train check FORMAT_VERSION = 9 def __init__(self): # last time a document changed and therefore training might be required self.last_doc_change_time: Optional[datetime] = None # Hash of primary keys of AUTO matching values last used in training self.last_auto_type_hash: Optional[bytes] = None self.data_vectorizer = None self.tags_binarizer = None self.tags_classifier = None self.correspondent_classifier = None self.document_type_classifier = None self.storage_path_classifier = None self._stemmer = None self._stop_words = None def load(self) -> None: # Catch warnings for processing with warnings.catch_warnings(record=True) as w: with open(settings.MODEL_FILE, "rb") as f: schema_version = pickle.load(f) if schema_version != self.FORMAT_VERSION: raise IncompatibleClassifierVersionError( "Cannot load classifier, incompatible versions.", ) else: try: self.last_doc_change_time = pickle.load(f) self.last_auto_type_hash = pickle.load(f) self.data_vectorizer = pickle.load(f) self.tags_binarizer = pickle.load(f) self.tags_classifier = pickle.load(f) self.correspondent_classifier = pickle.load(f) self.document_type_classifier = pickle.load(f) self.storage_path_classifier = pickle.load(f) except Exception as err: raise ClassifierModelCorruptError from err # Check for the warning about unpickling from differing versions # and consider it incompatible sk_learn_warning_url = ( "https://scikit-learn.org/stable/" "model_persistence.html" "#security-maintainability-limitations" ) for warning in w: # The warning is inconsistent, the MLPClassifier is a specific warning, others have not updated yet if issubclass(warning.category, InconsistentVersionWarning) or ( issubclass(warning.category, UserWarning) and sk_learn_warning_url in str(warning.message) ): raise IncompatibleClassifierVersionError("sklearn version update") def save(self): target_file: Path = settings.MODEL_FILE target_file_temp = target_file.with_suffix(".pickle.part") with open(target_file_temp, "wb") as f: pickle.dump(self.FORMAT_VERSION, f) pickle.dump(self.last_doc_change_time, f) pickle.dump(self.last_auto_type_hash, f) pickle.dump(self.data_vectorizer, f) pickle.dump(self.tags_binarizer, f) pickle.dump(self.tags_classifier, f) pickle.dump(self.correspondent_classifier, f) pickle.dump(self.document_type_classifier, f) pickle.dump(self.storage_path_classifier, f) target_file_temp.rename(target_file) def train(self): # Get non-inbox documents docs_queryset = Document.objects.exclude( tags__is_inbox_tag=True, ) # No documents exit to train against if docs_queryset.count() == 0: raise ValueError("No training data available.") labels_tags = [] labels_correspondent = [] labels_document_type = [] labels_storage_path = [] # Step 1: Extract and preprocess training data from the database. logger.debug("Gathering data from database...") hasher = sha256() for doc in docs_queryset: y = -1 dt = doc.document_type if dt and dt.matching_algorithm == MatchingModel.MATCH_AUTO: y = dt.pk hasher.update(y.to_bytes(4, "little", signed=True)) labels_document_type.append(y) y = -1 cor = doc.correspondent if cor and cor.matching_algorithm == MatchingModel.MATCH_AUTO: y = cor.pk hasher.update(y.to_bytes(4, "little", signed=True)) labels_correspondent.append(y) tags = sorted( tag.pk for tag in doc.tags.filter( matching_algorithm=MatchingModel.MATCH_AUTO, ) ) for tag in tags: hasher.update(tag.to_bytes(4, "little", signed=True)) labels_tags.append(tags) y = -1 sp = doc.storage_path if sp and sp.matching_algorithm == MatchingModel.MATCH_AUTO: y = sp.pk hasher.update(y.to_bytes(4, "little", signed=True)) labels_storage_path.append(y) labels_tags_unique = {tag for tags in labels_tags for tag in tags} num_tags = len(labels_tags_unique) # Check if retraining is actually required. # A document has been updated since the classifier was trained # New auto tags, types, correspondent, storage paths exist latest_doc_change = docs_queryset.latest("modified").modified if ( self.last_doc_change_time is not None and self.last_doc_change_time >= latest_doc_change ) and self.last_auto_type_hash == hasher.digest(): logger.info("No updates since last training") # Set the classifier information into the cache # Caching for 50 minutes, so slightly less than the normal retrain time cache.set( CLASSIFIER_MODIFIED_KEY, self.last_doc_change_time, CACHE_50_MINUTES, ) cache.set(CLASSIFIER_HASH_KEY, hasher.hexdigest(), CACHE_50_MINUTES) cache.set(CLASSIFIER_VERSION_KEY, self.FORMAT_VERSION, CACHE_50_MINUTES) return False # subtract 1 since -1 (null) is also part of the classes. # union with {-1} accounts for cases where all documents have # correspondents and types assigned, so -1 isn't part of labels_x, which # it usually is. num_correspondents = len(set(labels_correspondent) | {-1}) - 1 num_document_types = len(set(labels_document_type) | {-1}) - 1 num_storage_paths = len(set(labels_storage_path) | {-1}) - 1 logger.debug( "{} documents, {} tag(s), {} correspondent(s), " "{} document type(s). {} storage path(es)".format( docs_queryset.count(), num_tags, num_correspondents, num_document_types, num_storage_paths, ), ) from sklearn.feature_extraction.text import CountVectorizer from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import MultiLabelBinarizer # Step 2: vectorize data logger.debug("Vectorizing data...") def content_generator() -> Iterator[str]: """ Generates the content for documents, but once at a time """ for doc in docs_queryset: yield self.preprocess_content(doc.content) self.data_vectorizer = CountVectorizer( analyzer="word", ngram_range=(1, 2), min_df=0.01, ) data_vectorized = self.data_vectorizer.fit_transform(content_generator()) # See the notes here: # https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html # This attribute isn't needed to function and can be large self.data_vectorizer.stop_words_ = None # Step 3: train the classifiers if num_tags > 0: logger.debug("Training tags classifier...") if num_tags == 1: # Special case where only one tag has auto: # Fallback to binary classification. labels_tags = [ label[0] if len(label) == 1 else -1 for label in labels_tags ] self.tags_binarizer = LabelBinarizer() labels_tags_vectorized = self.tags_binarizer.fit_transform( labels_tags, ).ravel() else: self.tags_binarizer = MultiLabelBinarizer() labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags) self.tags_classifier = MLPClassifier(tol=0.01) self.tags_classifier.fit(data_vectorized, labels_tags_vectorized) else: self.tags_classifier = None logger.debug("There are no tags. Not training tags classifier.") if num_correspondents > 0: logger.debug("Training correspondent classifier...") self.correspondent_classifier = MLPClassifier(tol=0.01) self.correspondent_classifier.fit(data_vectorized, labels_correspondent) else: self.correspondent_classifier = None logger.debug( "There are no correspondents. Not training correspondent " "classifier.", ) if num_document_types > 0: logger.debug("Training document type classifier...") self.document_type_classifier = MLPClassifier(tol=0.01) self.document_type_classifier.fit(data_vectorized, labels_document_type) else: self.document_type_classifier = None logger.debug( "There are no document types. Not training document type " "classifier.", ) if num_storage_paths > 0: logger.debug( "Training storage paths classifier...", ) self.storage_path_classifier = MLPClassifier(tol=0.01) self.storage_path_classifier.fit( data_vectorized, labels_storage_path, ) else: self.storage_path_classifier = None logger.debug( "There are no storage paths. Not training storage path classifier.", ) self.last_doc_change_time = latest_doc_change self.last_auto_type_hash = hasher.digest() # Set the classifier information into the cache # Caching for 50 minutes, so slightly less than the normal retrain time cache.set(CLASSIFIER_MODIFIED_KEY, self.last_doc_change_time, CACHE_50_MINUTES) cache.set(CLASSIFIER_HASH_KEY, hasher.hexdigest(), CACHE_50_MINUTES) cache.set(CLASSIFIER_VERSION_KEY, self.FORMAT_VERSION, CACHE_50_MINUTES) return True def preprocess_content(self, content: str) -> str: # pragma: no cover """ Process to contents of a document, distilling it down into words which are meaningful to the content """ # Lower case the document content = content.lower().strip() # Reduce spaces content = re.sub(r"\s+", " ", content) # Get only the letters content = re.sub(r"[^\w\s]", " ", content) # If the NLTK language is supported, do further processing if settings.NLTK_LANGUAGE is not None and settings.NLTK_ENABLED: import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer from nltk.tokenize import word_tokenize # Not really hacky, since it isn't private and is documented, but # set the search path for NLTK data to the single location it should be in nltk.data.path = [settings.NLTK_DIR] try: # Preload the corpus early, to force the lazy loader to transform stopwords.ensure_loaded() # Do some one time setup # Sometimes, somehow, there's multiple threads loading the corpus # and it's not thread safe, raising an AttributeError if self._stemmer is None: self._stemmer = SnowballStemmer(settings.NLTK_LANGUAGE) if self._stop_words is None: self._stop_words = set(stopwords.words(settings.NLTK_LANGUAGE)) # Tokenize # This splits the content into tokens, roughly words words: list[str] = word_tokenize( content, language=settings.NLTK_LANGUAGE, ) meaningful_words = [] for word in words: # Skip stop words # These are words like "a", "and", "the" which add little meaning if word in self._stop_words: continue # Stem the words # This reduces the words to their stems. # "amazement" returns "amaz" # "amaze" returns "amaz # "amazed" returns "amaz" meaningful_words.append(self._stemmer.stem(word)) return " ".join(meaningful_words) except AttributeError: return content return content def predict_correspondent(self, content: str) -> Optional[int]: if self.correspondent_classifier: X = self.data_vectorizer.transform([self.preprocess_content(content)]) correspondent_id = self.correspondent_classifier.predict(X) if correspondent_id != -1: return correspondent_id else: return None else: return None def predict_document_type(self, content: str) -> Optional[int]: if self.document_type_classifier: X = self.data_vectorizer.transform([self.preprocess_content(content)]) document_type_id = self.document_type_classifier.predict(X) if document_type_id != -1: return document_type_id else: return None else: return None def predict_tags(self, content: str) -> list[int]: from sklearn.utils.multiclass import type_of_target if self.tags_classifier: X = self.data_vectorizer.transform([self.preprocess_content(content)]) y = self.tags_classifier.predict(X) tags_ids = self.tags_binarizer.inverse_transform(y)[0] if type_of_target(y).startswith("multilabel"): # the usual case when there are multiple tags. return list(tags_ids) elif type_of_target(y) == "binary" and tags_ids != -1: # This is for when we have binary classification with only one # tag and the result is to assign this tag. return [tags_ids] else: # Usually binary as well with -1 as the result, but we're # going to catch everything else here as well. return [] else: return [] def predict_storage_path(self, content: str) -> Optional[int]: if self.storage_path_classifier: X = self.data_vectorizer.transform([self.preprocess_content(content)]) storage_path_id = self.storage_path_classifier.predict(X) if storage_path_id != -1: return storage_path_id else: return None else: return None