from __future__ import annotations import logging from binascii import hexlify from dataclasses import dataclass from typing import TYPE_CHECKING from typing import Final from django.core.cache import cache from documents.models import Document if TYPE_CHECKING: from documents.classifier import DocumentClassifier logger = logging.getLogger("paperless.caching") @dataclass(frozen=True) class MetadataCacheData: original_checksum: str original_metadata: list archive_checksum: str | None archive_metadata: list | None @dataclass(frozen=True) class SuggestionCacheData: classifier_version: int classifier_hash: str suggestions: dict CLASSIFIER_VERSION_KEY: Final[str] = "classifier_version" CLASSIFIER_HASH_KEY: Final[str] = "classifier_hash" CLASSIFIER_MODIFIED_KEY: Final[str] = "classifier_modified" CACHE_1_MINUTE: Final[int] = 60 CACHE_5_MINUTES: Final[int] = 5 * CACHE_1_MINUTE CACHE_50_MINUTES: Final[int] = 50 * CACHE_1_MINUTE def get_suggestion_cache_key(document_id: int) -> str: """ Returns the basic key for a document's suggestions """ return f"doc_{document_id}_suggest" def get_suggestion_cache(document_id: int) -> SuggestionCacheData | None: """ If possible, return the cached suggestions for the given document ID. The classifier needs to be matching in format and hash and the suggestions need to have been cached once. """ from documents.classifier import DocumentClassifier doc_key = get_suggestion_cache_key(document_id) cache_hits = cache.get_many([CLASSIFIER_VERSION_KEY, CLASSIFIER_HASH_KEY, doc_key]) # The document suggestions are in the cache if doc_key in cache_hits: doc_suggestions: SuggestionCacheData = cache_hits[doc_key] # The classifier format is the same # The classifier hash is the same # Then the suggestions can be used if ( CLASSIFIER_VERSION_KEY in cache_hits and cache_hits[CLASSIFIER_VERSION_KEY] == DocumentClassifier.FORMAT_VERSION and cache_hits[CLASSIFIER_VERSION_KEY] == doc_suggestions.classifier_version ) and ( CLASSIFIER_HASH_KEY in cache_hits and cache_hits[CLASSIFIER_HASH_KEY] == doc_suggestions.classifier_hash ): return doc_suggestions else: # pragma: no cover # Remove the key because something didn't match cache.delete(doc_key) return None def set_suggestions_cache( document_id: int, suggestions: dict, classifier: DocumentClassifier | None, *, timeout=CACHE_50_MINUTES, ) -> None: """ Caches the given suggestions, which were generated by the given classifier. If there is no classifier, this function is a no-op (there won't be suggestions then anyway) """ if classifier is not None: doc_key = get_suggestion_cache_key(document_id) cache.set( doc_key, SuggestionCacheData( classifier.FORMAT_VERSION, hexlify(classifier.last_auto_type_hash).decode(), suggestions, ), timeout, ) def refresh_suggestions_cache( document_id: int, *, timeout: int = CACHE_50_MINUTES, ) -> None: """ Refreshes the expiration of the suggestions for the given document ID to the given timeout """ doc_key = get_suggestion_cache_key(document_id) cache.touch(doc_key, timeout) def get_metadata_cache_key(document_id: int) -> str: """ Returns the basic key for a document's metadata """ return f"doc_{document_id}_metadata" def get_metadata_cache(document_id: int) -> MetadataCacheData | None: """ Returns the cached document metadata for the given document ID, as long as the metadata was cached once and the checksums have not changed """ doc_key = get_metadata_cache_key(document_id) doc_metadata: MetadataCacheData | None = cache.get(doc_key) # The metadata exists in the cache if doc_metadata is not None: try: doc = Document.objects.only( "pk", "checksum", "archive_checksum", "archive_filename", ).get(pk=document_id) # The original checksums match # If it has one, the archive checksums match # Then, we can use the metadata if ( doc_metadata.original_checksum == doc.checksum and doc.has_archive_version and doc_metadata.archive_checksum is not None and doc_metadata.archive_checksum == doc.archive_checksum ): # Refresh cache cache.touch(doc_key, CACHE_50_MINUTES) return doc_metadata else: # pragma: no cover # Something didn't match, delete the key cache.delete(doc_key) except Document.DoesNotExist: # pragma: no cover # Basically impossible, but the key existed, but the Document didn't cache.delete(doc_key) return None def set_metadata_cache( document: Document, original_metadata: list, archive_metadata: list | None, *, timeout=CACHE_50_MINUTES, ) -> None: """ Sets the metadata into cache for the given Document """ doc_key = get_metadata_cache_key(document.pk) cache.set( doc_key, MetadataCacheData( document.checksum, original_metadata, document.archive_checksum, archive_metadata, ), timeout, ) def refresh_metadata_cache( document_id: int, *, timeout: int = CACHE_50_MINUTES, ) -> None: """ Refreshes the expiration of the metadata for the given document ID to the given timeout """ doc_key = get_metadata_cache_key(document_id) cache.touch(doc_key, timeout) def get_thumbnail_modified_key(document_id: int) -> str: """ Builds the key to store a thumbnail's timestamp """ return f"doc_{document_id}_thumbnail_modified" def clear_document_caches(document_id: int) -> None: """ Removes all cached items for the given document """ cache.delete_many( [ get_suggestion_cache_key(document_id), get_metadata_cache_key(document_id), get_thumbnail_modified_key(document_id), ], )