import logging import os.path import pickle from django.core.management.base import BaseCommand from sklearn.feature_extraction.text import CountVectorizer from sklearn.multiclass import OneVsRestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder from documents.classifier import preprocess_content, DocumentClassifier from documents.models import Document from paperless import settings from ...mixins import Renderable class Command(Renderable, BaseCommand): help = """ There is no help. """.replace(" ", "") def __init__(self, *args, **kwargs): BaseCommand.__init__(self, *args, **kwargs) def handle(self, *args, **options): clf = DocumentClassifier() data = list() labels_tags = list() labels_correspondent = list() labels_type = list() # Step 1: Extract and preprocess training data from the database. logging.getLogger(__name__).info("Gathering data from database...") for doc in Document.objects.exclude(tags__is_inbox_tag=True): data.append(preprocess_content(doc.content)) labels_type.append(doc.document_type.name if doc.document_type is not None else "-") labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") tags = [tag.name for tag in doc.tags.all()] labels_tags.append(tags) # Step 2: vectorize data logging.getLogger(__name__).info("Vectorizing data...") clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05) data_vectorized = clf.data_vectorizer.fit_transform(data) clf.tags_binarizer = MultiLabelBinarizer() labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags) clf.correspondent_binarizer = LabelEncoder() labels_correspondent_vectorized = clf.correspondent_binarizer.fit_transform(labels_correspondent) clf.type_binarizer = LabelEncoder() labels_type_vectorized = clf.type_binarizer.fit_transform(labels_type) # Step 3: train the classifiers if len(clf.tags_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training tags classifier") clf.tags_classifier = OneVsRestClassifier(MultinomialNB()) clf.tags_classifier.fit(data_vectorized, labels_tags_vectorized) else: clf.tags_classifier = None logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") if len(clf.correspondent_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training correspondent classifier") clf.correspondent_classifier = MultinomialNB() clf.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) else: clf.correspondent_classifier = None logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") if len(clf.type_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training document type classifier") clf.type_classifier = MultinomialNB() clf.type_classifier.fit(data_vectorized, labels_type_vectorized) else: clf.type_classifier = None logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...") clf.save_classifier()