paperless-ngx/src/documents/classifier.py

489 lines
19 KiB
Python

import logging
import pickle
import re
import time
import warnings
from collections.abc import Iterator
from hashlib import sha256
from pathlib import Path
from typing import TYPE_CHECKING
from typing import Optional
if TYPE_CHECKING:
from datetime import datetime
from numpy import ndarray
from django.conf import settings
from django.core.cache import cache
from sklearn.exceptions import InconsistentVersionWarning
from documents.caching import CACHE_50_MINUTES
from documents.caching import CLASSIFIER_HASH_KEY
from documents.caching import CLASSIFIER_MODIFIED_KEY
from documents.caching import CLASSIFIER_VERSION_KEY
from documents.models import Document
from documents.models import MatchingModel
logger = logging.getLogger("paperless.classifier")
class IncompatibleClassifierVersionError(Exception):
def __init__(self, message: str, *args: object) -> None:
self.message: str = message
super().__init__(*args)
class ClassifierModelCorruptError(Exception):
pass
def load_classifier(*, raise_exception: bool = False) -> Optional["DocumentClassifier"]:
if not settings.MODEL_FILE.is_file():
logger.debug(
"Document classification model does not exist (yet), not "
"performing automatic matching.",
)
return None
classifier = DocumentClassifier()
try:
classifier.load()
except IncompatibleClassifierVersionError as e:
logger.info(f"Classifier version incompatible: {e.message}, will re-train")
Path(settings.MODEL_FILE).unlink()
classifier = None
if raise_exception:
raise e
except ClassifierModelCorruptError as e:
# there's something wrong with the model file.
logger.exception(
"Unrecoverable error while loading document "
"classification model, deleting model file.",
)
Path(settings.MODEL_FILE).unlink
classifier = None
if raise_exception:
raise e
except OSError as e:
logger.exception("IO error while loading document classification model")
classifier = None
if raise_exception:
raise e
except Exception as e: # pragma: no cover
logger.exception("Unknown error while loading document classification model")
classifier = None
if raise_exception:
raise e
return classifier
class DocumentClassifier:
# v7 - Updated scikit-learn package version
# v8 - Added storage path classifier
# v9 - Changed from hashing to time/ids for re-train check
FORMAT_VERSION = 9
def __init__(self) -> None:
# last time a document changed and therefore training might be required
self.last_doc_change_time: datetime | None = None
# Hash of primary keys of AUTO matching values last used in training
self.last_auto_type_hash: bytes | None = None
self.data_vectorizer = None
self.tags_binarizer = None
self.tags_classifier = None
self.correspondent_classifier = None
self.document_type_classifier = None
self.storage_path_classifier = None
self._stemmer = None
self._stop_words = None
def load(self) -> None:
# Catch warnings for processing
with warnings.catch_warnings(record=True) as w:
with Path(settings.MODEL_FILE).open("rb") as f:
schema_version = pickle.load(f)
if schema_version != self.FORMAT_VERSION:
raise IncompatibleClassifierVersionError(
"Cannot load classifier, incompatible versions.",
)
else:
try:
self.last_doc_change_time = pickle.load(f)
self.last_auto_type_hash = pickle.load(f)
self.data_vectorizer = pickle.load(f)
self.tags_binarizer = pickle.load(f)
self.tags_classifier = pickle.load(f)
self.correspondent_classifier = pickle.load(f)
self.document_type_classifier = pickle.load(f)
self.storage_path_classifier = pickle.load(f)
except Exception as err:
raise ClassifierModelCorruptError from err
# Check for the warning about unpickling from differing versions
# and consider it incompatible
sk_learn_warning_url = (
"https://scikit-learn.org/stable/"
"model_persistence.html"
"#security-maintainability-limitations"
)
for warning in w:
# The warning is inconsistent, the MLPClassifier is a specific warning, others have not updated yet
if issubclass(warning.category, InconsistentVersionWarning) or (
issubclass(warning.category, UserWarning)
and sk_learn_warning_url in str(warning.message)
):
raise IncompatibleClassifierVersionError("sklearn version update")
def set_last_checked(self) -> None:
# save a timestamp of the last time we checked for retraining to a file
with Path(settings.MODEL_FILE.with_suffix(".last_checked")).open("w") as f:
f.write(str(time.time()))
def get_last_checked(self) -> float | None:
# load the timestamp of the last time we checked for retraining
try:
with Path(settings.MODEL_FILE.with_suffix(".last_checked")).open("r") as f:
return float(f.read())
except FileNotFoundError: # pragma: no cover
return None
def save(self) -> None:
target_file: Path = settings.MODEL_FILE
target_file_temp: Path = target_file.with_suffix(".pickle.part")
with target_file_temp.open("wb") as f:
pickle.dump(self.FORMAT_VERSION, f)
pickle.dump(self.last_doc_change_time, f)
pickle.dump(self.last_auto_type_hash, f)
pickle.dump(self.data_vectorizer, f)
pickle.dump(self.tags_binarizer, f)
pickle.dump(self.tags_classifier, f)
pickle.dump(self.correspondent_classifier, f)
pickle.dump(self.document_type_classifier, f)
pickle.dump(self.storage_path_classifier, f)
target_file_temp.rename(target_file)
self.set_last_checked()
def train(self) -> bool:
# Get non-inbox documents
docs_queryset = (
Document.objects.exclude(
tags__is_inbox_tag=True,
)
.select_related("document_type", "correspondent", "storage_path")
.prefetch_related("tags")
.order_by("pk")
)
# No documents exit to train against
if docs_queryset.count() == 0:
raise ValueError("No training data available.")
labels_tags = []
labels_correspondent = []
labels_document_type = []
labels_storage_path = []
# Step 1: Extract and preprocess training data from the database.
logger.debug("Gathering data from database...")
hasher = sha256()
for doc in docs_queryset:
y = -1
dt = doc.document_type
if dt and dt.matching_algorithm == MatchingModel.MATCH_AUTO:
y = dt.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_document_type.append(y)
y = -1
cor = doc.correspondent
if cor and cor.matching_algorithm == MatchingModel.MATCH_AUTO:
y = cor.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_correspondent.append(y)
tags: list[int] = list(
doc.tags.filter(matching_algorithm=MatchingModel.MATCH_AUTO)
.order_by("pk")
.values_list("pk", flat=True),
)
for tag in tags:
hasher.update(tag.to_bytes(4, "little", signed=True))
labels_tags.append(tags)
y = -1
sp = doc.storage_path
if sp and sp.matching_algorithm == MatchingModel.MATCH_AUTO:
y = sp.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_storage_path.append(y)
labels_tags_unique = {tag for tags in labels_tags for tag in tags}
num_tags = len(labels_tags_unique)
# Check if retraining is actually required.
# A document has been updated since the classifier was trained
# New auto tags, types, correspondent, storage paths exist
latest_doc_change = docs_queryset.latest("modified").modified
if (
self.last_doc_change_time is not None
and self.last_doc_change_time >= latest_doc_change
) and self.last_auto_type_hash == hasher.digest():
logger.info("No updates since last training")
self.set_last_checked()
# Set the classifier information into the cache
# Caching for 50 minutes, so slightly less than the normal retrain time
cache.set(
CLASSIFIER_MODIFIED_KEY,
self.last_doc_change_time,
CACHE_50_MINUTES,
)
cache.set(CLASSIFIER_HASH_KEY, hasher.hexdigest(), CACHE_50_MINUTES)
cache.set(CLASSIFIER_VERSION_KEY, self.FORMAT_VERSION, CACHE_50_MINUTES)
return False
# subtract 1 since -1 (null) is also part of the classes.
# union with {-1} accounts for cases where all documents have
# correspondents and types assigned, so -1 isn't part of labels_x, which
# it usually is.
num_correspondents: int = len(set(labels_correspondent) | {-1}) - 1
num_document_types: int = len(set(labels_document_type) | {-1}) - 1
num_storage_paths: int = len(set(labels_storage_path) | {-1}) - 1
logger.debug(
f"{docs_queryset.count()} documents, {num_tags} tag(s), {num_correspondents} correspondent(s), "
f"{num_document_types} document type(s). {num_storage_paths} storage path(s)",
)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer
# Step 2: vectorize data
logger.debug("Vectorizing data...")
def content_generator() -> Iterator[str]:
"""
Generates the content for documents, but once at a time
"""
for doc in docs_queryset:
yield self.preprocess_content(doc.content)
self.data_vectorizer = CountVectorizer(
analyzer="word",
ngram_range=(1, 2),
min_df=0.01,
)
data_vectorized: ndarray = self.data_vectorizer.fit_transform(
content_generator(),
)
# See the notes here:
# https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
# This attribute isn't needed to function and can be large
self.data_vectorizer.stop_words_ = None
# Step 3: train the classifiers
if num_tags > 0:
logger.debug("Training tags classifier...")
if num_tags == 1:
# Special case where only one tag has auto:
# Fallback to binary classification.
labels_tags = [
label[0] if len(label) == 1 else -1 for label in labels_tags
]
self.tags_binarizer = LabelBinarizer()
labels_tags_vectorized: ndarray = self.tags_binarizer.fit_transform(
labels_tags,
).ravel()
else:
self.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
self.tags_classifier = MLPClassifier(tol=0.01)
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
self.tags_classifier = None
logger.debug("There are no tags. Not training tags classifier.")
if num_correspondents > 0:
logger.debug("Training correspondent classifier...")
self.correspondent_classifier = MLPClassifier(tol=0.01)
self.correspondent_classifier.fit(data_vectorized, labels_correspondent)
else:
self.correspondent_classifier = None
logger.debug(
"There are no correspondents. Not training correspondent classifier.",
)
if num_document_types > 0:
logger.debug("Training document type classifier...")
self.document_type_classifier = MLPClassifier(tol=0.01)
self.document_type_classifier.fit(data_vectorized, labels_document_type)
else:
self.document_type_classifier = None
logger.debug(
"There are no document types. Not training document type classifier.",
)
if num_storage_paths > 0:
logger.debug(
"Training storage paths classifier...",
)
self.storage_path_classifier = MLPClassifier(tol=0.01)
self.storage_path_classifier.fit(
data_vectorized,
labels_storage_path,
)
else:
self.storage_path_classifier = None
logger.debug(
"There are no storage paths. Not training storage path classifier.",
)
self.last_doc_change_time = latest_doc_change
self.last_auto_type_hash = hasher.digest()
# Set the classifier information into the cache
# Caching for 50 minutes, so slightly less than the normal retrain time
cache.set(CLASSIFIER_MODIFIED_KEY, self.last_doc_change_time, CACHE_50_MINUTES)
cache.set(CLASSIFIER_HASH_KEY, hasher.hexdigest(), CACHE_50_MINUTES)
cache.set(CLASSIFIER_VERSION_KEY, self.FORMAT_VERSION, CACHE_50_MINUTES)
return True
def preprocess_content(self, content: str) -> str: # pragma: no cover
"""
Process to contents of a document, distilling it down into
words which are meaningful to the content
"""
# Lower case the document
content = content.lower().strip()
# Reduce spaces
content = re.sub(r"\s+", " ", content)
# Get only the letters
content = re.sub(r"[^\w\s]", " ", content)
# If the NLTK language is supported, do further processing
if settings.NLTK_LANGUAGE is not None and settings.NLTK_ENABLED:
import nltk
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
from nltk.tokenize import word_tokenize
# Not really hacky, since it isn't private and is documented, but
# set the search path for NLTK data to the single location it should be in
nltk.data.path = [settings.NLTK_DIR]
try:
# Preload the corpus early, to force the lazy loader to transform
stopwords.ensure_loaded()
# Do some one time setup
# Sometimes, somehow, there's multiple threads loading the corpus
# and it's not thread safe, raising an AttributeError
if self._stemmer is None:
self._stemmer = SnowballStemmer(settings.NLTK_LANGUAGE)
if self._stop_words is None:
self._stop_words = set(stopwords.words(settings.NLTK_LANGUAGE))
# Tokenize
# This splits the content into tokens, roughly words
words: list[str] = word_tokenize(
content,
language=settings.NLTK_LANGUAGE,
)
meaningful_words = []
for word in words:
# Skip stop words
# These are words like "a", "and", "the" which add little meaning
if word in self._stop_words:
continue
# Stem the words
# This reduces the words to their stems.
# "amazement" returns "amaz"
# "amaze" returns "amaz
# "amazed" returns "amaz"
meaningful_words.append(self._stemmer.stem(word))
return " ".join(meaningful_words)
except AttributeError:
return content
return content
def predict_correspondent(self, content: str) -> int | None:
if self.correspondent_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
correspondent_id = self.correspondent_classifier.predict(X)
if correspondent_id != -1:
return correspondent_id
else:
return None
else:
return None
def predict_document_type(self, content: str) -> int | None:
if self.document_type_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
document_type_id = self.document_type_classifier.predict(X)
if document_type_id != -1:
return document_type_id
else:
return None
else:
return None
def predict_tags(self, content: str) -> list[int]:
from sklearn.utils.multiclass import type_of_target
if self.tags_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
y = self.tags_classifier.predict(X)
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
if type_of_target(y).startswith("multilabel"):
# the usual case when there are multiple tags.
return list(tags_ids)
elif type_of_target(y) == "binary" and tags_ids != -1:
# This is for when we have binary classification with only one
# tag and the result is to assign this tag.
return [tags_ids]
else:
# Usually binary as well with -1 as the result, but we're
# going to catch everything else here as well.
return []
else:
return []
def predict_storage_path(self, content: str) -> int | None:
if self.storage_path_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
storage_path_id = self.storage_path_classifier.predict(X)
if storage_path_id != -1:
return storage_path_id
else:
return None
else:
return None