mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
257 lines
9.2 KiB
Python
Executable File
257 lines
9.2 KiB
Python
Executable File
import hashlib
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import re
|
|
|
|
from django.conf import settings
|
|
from sklearn.feature_extraction.text import CountVectorizer
|
|
from sklearn.neural_network import MLPClassifier
|
|
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
|
|
from sklearn.utils.multiclass import type_of_target
|
|
|
|
from documents.models import Document, MatchingModel
|
|
|
|
|
|
class IncompatibleClassifierVersionError(Exception):
|
|
pass
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def preprocess_content(content):
|
|
content = content.lower().strip()
|
|
content = re.sub(r"\s+", " ", content)
|
|
return content
|
|
|
|
|
|
class DocumentClassifier(object):
|
|
|
|
FORMAT_VERSION = 6
|
|
|
|
def __init__(self):
|
|
# mtime of the model file on disk. used to prevent reloading when
|
|
# nothing has changed.
|
|
self.classifier_version = 0
|
|
|
|
# hash of the training data. used to prevent re-training when the
|
|
# training data has not changed.
|
|
self.data_hash = None
|
|
|
|
self.data_vectorizer = None
|
|
self.tags_binarizer = None
|
|
self.tags_classifier = None
|
|
self.correspondent_classifier = None
|
|
self.document_type_classifier = None
|
|
|
|
def reload(self):
|
|
if os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
|
|
with open(settings.MODEL_FILE, "rb") as f:
|
|
schema_version = pickle.load(f)
|
|
|
|
if schema_version != self.FORMAT_VERSION:
|
|
raise IncompatibleClassifierVersionError(
|
|
"Cannor load classifier, incompatible versions.")
|
|
else:
|
|
if self.classifier_version > 0:
|
|
# Don't be confused by this check. It's simply here
|
|
# so that we wont log anything on initial reload.
|
|
logger.info("Classifier updated on disk, "
|
|
"reloading classifier models")
|
|
self.data_hash = pickle.load(f)
|
|
self.data_vectorizer = pickle.load(f)
|
|
self.tags_binarizer = pickle.load(f)
|
|
|
|
self.tags_classifier = pickle.load(f)
|
|
self.correspondent_classifier = pickle.load(f)
|
|
self.document_type_classifier = pickle.load(f)
|
|
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
|
|
|
|
def save_classifier(self):
|
|
with open(settings.MODEL_FILE, "wb") as f:
|
|
pickle.dump(self.FORMAT_VERSION, f)
|
|
pickle.dump(self.data_hash, f)
|
|
pickle.dump(self.data_vectorizer, f)
|
|
|
|
pickle.dump(self.tags_binarizer, f)
|
|
|
|
pickle.dump(self.tags_classifier, f)
|
|
pickle.dump(self.correspondent_classifier, f)
|
|
pickle.dump(self.document_type_classifier, f)
|
|
|
|
def train(self):
|
|
data = list()
|
|
labels_tags = list()
|
|
labels_correspondent = list()
|
|
labels_document_type = list()
|
|
|
|
# Step 1: Extract and preprocess training data from the database.
|
|
logging.getLogger(__name__).debug("Gathering data from database...")
|
|
m = hashlib.sha1()
|
|
for doc in Document.objects.order_by('pk').exclude(tags__is_inbox_tag=True): # NOQA: E501
|
|
preprocessed_content = preprocess_content(doc.content)
|
|
m.update(preprocessed_content.encode('utf-8'))
|
|
data.append(preprocessed_content)
|
|
|
|
y = -1
|
|
dt = doc.document_type
|
|
if dt and dt.matching_algorithm == MatchingModel.MATCH_AUTO:
|
|
y = dt.pk
|
|
m.update(y.to_bytes(4, 'little', signed=True))
|
|
labels_document_type.append(y)
|
|
|
|
y = -1
|
|
cor = doc.correspondent
|
|
if cor and cor.matching_algorithm == MatchingModel.MATCH_AUTO:
|
|
y = cor.pk
|
|
m.update(y.to_bytes(4, 'little', signed=True))
|
|
labels_correspondent.append(y)
|
|
|
|
tags = [tag.pk for tag in doc.tags.filter(
|
|
matching_algorithm=MatchingModel.MATCH_AUTO
|
|
)]
|
|
m.update(bytearray(tags))
|
|
labels_tags.append(tags)
|
|
|
|
if not data:
|
|
raise ValueError("No training data available.")
|
|
|
|
new_data_hash = m.digest()
|
|
|
|
if self.data_hash and new_data_hash == self.data_hash:
|
|
return False
|
|
|
|
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
|
|
|
|
num_tags = len(labels_tags_unique)
|
|
|
|
# substract 1 since -1 (null) is also part of the classes.
|
|
|
|
# union with {-1} accounts for cases where all documents have
|
|
# correspondents and types assigned, so -1 isnt part of labels_x, which
|
|
# it usually is.
|
|
num_correspondents = len(set(labels_correspondent) | {-1}) - 1
|
|
num_document_types = len(set(labels_document_type) | {-1}) - 1
|
|
|
|
logging.getLogger(__name__).debug(
|
|
"{} documents, {} tag(s), {} correspondent(s), "
|
|
"{} document type(s).".format(
|
|
len(data),
|
|
num_tags,
|
|
num_correspondents,
|
|
num_document_types
|
|
)
|
|
)
|
|
|
|
# Step 2: vectorize data
|
|
logging.getLogger(__name__).debug("Vectorizing data...")
|
|
self.data_vectorizer = CountVectorizer(
|
|
analyzer="word",
|
|
ngram_range=(1, 2),
|
|
min_df=0.01
|
|
)
|
|
data_vectorized = self.data_vectorizer.fit_transform(data)
|
|
|
|
# Step 3: train the classifiers
|
|
if num_tags > 0:
|
|
logging.getLogger(__name__).debug("Training tags classifier...")
|
|
|
|
if num_tags == 1:
|
|
# Special case where only one tag has auto:
|
|
# Fallback to binary classification.
|
|
labels_tags = [label[0] if len(label) == 1 else -1
|
|
for label in labels_tags]
|
|
self.tags_binarizer = LabelBinarizer()
|
|
labels_tags_vectorized = self.tags_binarizer.fit_transform(
|
|
labels_tags).ravel()
|
|
else:
|
|
self.tags_binarizer = MultiLabelBinarizer()
|
|
labels_tags_vectorized = self.tags_binarizer.fit_transform(
|
|
labels_tags)
|
|
|
|
self.tags_classifier = MLPClassifier(tol=0.01)
|
|
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
|
else:
|
|
self.tags_classifier = None
|
|
logging.getLogger(__name__).debug(
|
|
"There are no tags. Not training tags classifier."
|
|
)
|
|
|
|
if num_correspondents > 0:
|
|
logging.getLogger(__name__).debug(
|
|
"Training correspondent classifier..."
|
|
)
|
|
self.correspondent_classifier = MLPClassifier(tol=0.01)
|
|
self.correspondent_classifier.fit(
|
|
data_vectorized,
|
|
labels_correspondent
|
|
)
|
|
else:
|
|
self.correspondent_classifier = None
|
|
logging.getLogger(__name__).debug(
|
|
"There are no correspondents. Not training correspondent "
|
|
"classifier."
|
|
)
|
|
|
|
if num_document_types > 0:
|
|
logging.getLogger(__name__).debug(
|
|
"Training document type classifier..."
|
|
)
|
|
self.document_type_classifier = MLPClassifier(tol=0.01)
|
|
self.document_type_classifier.fit(
|
|
data_vectorized,
|
|
labels_document_type
|
|
)
|
|
else:
|
|
self.document_type_classifier = None
|
|
logging.getLogger(__name__).debug(
|
|
"There are no document types. Not training document type "
|
|
"classifier."
|
|
)
|
|
|
|
self.data_hash = new_data_hash
|
|
|
|
return True
|
|
|
|
def predict_correspondent(self, content):
|
|
if self.correspondent_classifier:
|
|
X = self.data_vectorizer.transform([preprocess_content(content)])
|
|
correspondent_id = self.correspondent_classifier.predict(X)
|
|
if correspondent_id != -1:
|
|
return correspondent_id
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
|
|
def predict_document_type(self, content):
|
|
if self.document_type_classifier:
|
|
X = self.data_vectorizer.transform([preprocess_content(content)])
|
|
document_type_id = self.document_type_classifier.predict(X)
|
|
if document_type_id != -1:
|
|
return document_type_id
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
|
|
def predict_tags(self, content):
|
|
if self.tags_classifier:
|
|
X = self.data_vectorizer.transform([preprocess_content(content)])
|
|
y = self.tags_classifier.predict(X)
|
|
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
|
|
if type_of_target(y).startswith('multilabel'):
|
|
# the usual case when there are multiple tags.
|
|
return list(tags_ids)
|
|
elif type_of_target(y) == 'binary' and tags_ids != -1:
|
|
# This is for when we have binary classification with only one
|
|
# tag and the result is to assign this tag.
|
|
return [tags_ids]
|
|
else:
|
|
# Usually binary as well with -1 as the result, but we're
|
|
# going to catch everything else here as well.
|
|
return []
|
|
else:
|
|
return []
|