2025-05-24 11:47:21 -07:00

215 lines
6.8 KiB
Python

import logging
import shutil
import faiss
import llama_index.core.settings as llama_settings
import tqdm
from django.conf import settings
from llama_index.core import Document as LlamaDocument
from llama_index.core import StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.schema import BaseNode
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.core.storage.index_store import SimpleIndexStore
from llama_index.vector_stores.faiss import FaissVectorStore
from documents.models import Document
from paperless.ai.embedding import build_llm_index_text
from paperless.ai.embedding import get_embedding_dim
from paperless.ai.embedding import get_embedding_model
logger = logging.getLogger("paperless.ai.indexing")
def get_or_create_storage_context(*, rebuild=False):
"""
Loads or creates the StorageContext (vector store, docstore, index store).
If rebuild=True, deletes and recreates everything.
"""
if rebuild:
shutil.rmtree(settings.LLM_INDEX_DIR, ignore_errors=True)
settings.LLM_INDEX_DIR.mkdir(parents=True, exist_ok=True)
if rebuild or not settings.LLM_INDEX_DIR.exists():
embedding_dim = get_embedding_dim()
faiss_index = faiss.IndexFlatL2(embedding_dim)
vector_store = FaissVectorStore(faiss_index=faiss_index)
docstore = SimpleDocumentStore()
index_store = SimpleIndexStore()
else:
vector_store = FaissVectorStore.from_persist_dir(settings.LLM_INDEX_DIR)
docstore = SimpleDocumentStore.from_persist_dir(settings.LLM_INDEX_DIR)
index_store = SimpleIndexStore.from_persist_dir(settings.LLM_INDEX_DIR)
return StorageContext.from_defaults(
docstore=docstore,
index_store=index_store,
vector_store=vector_store,
persist_dir=settings.LLM_INDEX_DIR,
)
def get_vector_store_index(storage_context, embed_model):
"""
Returns a VectorStoreIndex given a storage context and embed model.
"""
return VectorStoreIndex(
storage_context=storage_context,
embed_model=embed_model,
)
def build_document_node(document: Document) -> list[BaseNode]:
"""
Given a Document, returns parsed Nodes ready for indexing.
"""
if not document.content:
return []
text = build_llm_index_text(document)
metadata = {
"document_id": document.id,
"title": document.title,
"tags": [t.name for t in document.tags.all()],
"correspondent": document.correspondent.name
if document.correspondent
else None,
"document_type": document.document_type.name
if document.document_type
else None,
"created": document.created.isoformat() if document.created else None,
"added": document.added.isoformat() if document.added else None,
}
doc = LlamaDocument(text=text, metadata=metadata)
parser = SimpleNodeParser()
return parser.get_nodes_from_documents([doc])
def load_or_build_index(storage_context, embed_model, nodes=None):
"""
Load an existing VectorStoreIndex if present,
or build a new one using provided nodes if storage is empty.
"""
try:
return VectorStoreIndex(
storage_context=storage_context,
embed_model=embed_model,
)
except ValueError as e:
if "One of nodes, objects, or index_struct must be provided" in str(e):
if not nodes:
return None
return VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
embed_model=embed_model,
)
raise
def remove_document_docstore_nodes(document: Document, index: VectorStoreIndex):
"""
Removes existing documents from docstore for a given document from the index.
This is necessary because FAISS IndexFlatL2 is append-only.
"""
all_node_ids = list(index.docstore.docs.keys())
existing_nodes = [
node.node_id
for node in index.docstore.get_nodes(all_node_ids)
if node.metadata.get("document_id") == document.id
]
for node_id in existing_nodes:
# Delete from docstore, FAISS IndexFlatL2 are append-only
index.docstore.delete_document(node_id)
def rebuild_llm_index(*, progress_bar_disable=False, rebuild=False):
"""
Rebuilds the LLM index from scratch.
"""
embed_model = get_embedding_model()
llama_settings.Settings.embed_model = embed_model
storage_context = get_or_create_storage_context(rebuild=rebuild)
nodes = []
for document in tqdm.tqdm(Document.objects.all(), disable=progress_bar_disable):
document_nodes = build_document_node(document)
nodes.extend(document_nodes)
if not nodes:
raise RuntimeError(
"No nodes to index — check that documents are available and have content.",
)
VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
embed_model=embed_model,
)
storage_context.persist(persist_dir=settings.LLM_INDEX_DIR)
def llm_index_add_or_update_document(document: Document):
"""
Adds or updates a document in the LLM index.
If the document already exists, it will be replaced.
"""
embed_model = get_embedding_model()
llama_settings.Settings.embed_model = embed_model
storage_context = get_or_create_storage_context(rebuild=False)
new_nodes = build_document_node(document)
index = load_or_build_index(storage_context, embed_model, nodes=new_nodes)
if index is None:
return
remove_document_docstore_nodes(document, index)
index.insert_nodes(new_nodes)
storage_context.persist(persist_dir=settings.LLM_INDEX_DIR)
def llm_index_remove_document(document: Document):
"""
Removes a document from the LLM index.
"""
embed_model = get_embedding_model()
llama_settings.embed_model = embed_model
storage_context = get_or_create_storage_context(rebuild=False)
index = load_or_build_index(storage_context, embed_model)
if index is None:
return
remove_document_docstore_nodes(document, index)
storage_context.persist(persist_dir=settings.LLM_INDEX_DIR)
def query_similar_documents(document: Document, top_k: int = 5) -> list[Document]:
"""
Runs a similarity query and returns top-k similar Document objects.
"""
index = load_or_build_index()
retriever = VectorIndexRetriever(index=index, similarity_top_k=top_k)
query_text = (document.title or "") + "\n" + (document.content or "")
results = retriever.retrieve(query_text)
document_ids = [
int(node.metadata["document_id"])
for node in results
if "document_id" in node.metadata
]
return list(Document.objects.filter(pk__in=document_ids))