paperless-ngx/src/documents/classifier.py
2023-04-26 09:35:27 -07:00

414 lines
15 KiB
Python

import logging
import os
import pickle
import re
import warnings
from datetime import datetime
from hashlib import sha256
from typing import Iterator
from typing import List
from typing import Optional
from django.conf import settings
from documents.models import Document
from documents.models import MatchingModel
logger = logging.getLogger("paperless.classifier")
class IncompatibleClassifierVersionError(Exception):
pass
class ClassifierModelCorruptError(Exception):
pass
def load_classifier() -> Optional["DocumentClassifier"]:
if not os.path.isfile(settings.MODEL_FILE):
logger.debug(
"Document classification model does not exist (yet), not "
"performing automatic matching.",
)
return None
classifier = DocumentClassifier()
try:
classifier.load()
except IncompatibleClassifierVersionError:
logger.info("Classifier version updated, will re-train")
os.unlink(settings.MODEL_FILE)
classifier = None
except ClassifierModelCorruptError:
# there's something wrong with the model file.
logger.exception(
"Unrecoverable error while loading document "
"classification model, deleting model file.",
)
os.unlink(settings.MODEL_FILE)
classifier = None
except OSError:
logger.exception("IO error while loading document classification model")
classifier = None
except Exception: # pragma: nocover
logger.exception("Unknown error while loading document classification model")
classifier = None
return classifier
class DocumentClassifier:
# v7 - Updated scikit-learn package version
# v8 - Added storage path classifier
# v9 - Changed from hashing to time/ids for re-train check
FORMAT_VERSION = 9
def __init__(self):
# last time a document changed and therefore training might be required
self.last_doc_change_time: Optional[datetime] = None
# Hash of primary keys of AUTO matching values last used in training
self.last_auto_type_hash: Optional[bytes] = None
self.data_vectorizer = None
self.tags_binarizer = None
self.tags_classifier = None
self.correspondent_classifier = None
self.document_type_classifier = None
self.storage_path_classifier = None
self._stemmer = None
self._stop_words = None
def load(self):
# Catch warnings for processing
with warnings.catch_warnings(record=True) as w:
with open(settings.MODEL_FILE, "rb") as f:
schema_version = pickle.load(f)
if schema_version != self.FORMAT_VERSION:
raise IncompatibleClassifierVersionError(
"Cannot load classifier, incompatible versions.",
)
else:
try:
self.last_doc_change_time = pickle.load(f)
self.last_auto_type_hash = pickle.load(f)
self.data_vectorizer = pickle.load(f)
self.tags_binarizer = pickle.load(f)
self.tags_classifier = pickle.load(f)
self.correspondent_classifier = pickle.load(f)
self.document_type_classifier = pickle.load(f)
self.storage_path_classifier = pickle.load(f)
except Exception as err:
raise ClassifierModelCorruptError from err
# Check for the warning about unpickling from differing versions
# and consider it incompatible
sk_learn_warning_url = (
"https://scikit-learn.org/stable/"
"model_persistence.html"
"#security-maintainability-limitations"
)
for warning in w:
if issubclass(warning.category, UserWarning):
w_msg = str(warning.message)
if sk_learn_warning_url in w_msg:
raise IncompatibleClassifierVersionError
def save(self):
target_file = settings.MODEL_FILE
target_file_temp = settings.MODEL_FILE.with_suffix(".pickle.part")
with open(target_file_temp, "wb") as f:
pickle.dump(self.FORMAT_VERSION, f)
pickle.dump(self.last_doc_change_time, f)
pickle.dump(self.last_auto_type_hash, f)
pickle.dump(self.data_vectorizer, f)
pickle.dump(self.tags_binarizer, f)
pickle.dump(self.tags_classifier, f)
pickle.dump(self.correspondent_classifier, f)
pickle.dump(self.document_type_classifier, f)
pickle.dump(self.storage_path_classifier, f)
target_file_temp.rename(target_file)
def train(self):
# Get non-inbox documents
docs_queryset = Document.objects.exclude(
tags__is_inbox_tag=True,
)
# No documents exit to train against
if docs_queryset.count() == 0:
raise ValueError("No training data available.")
labels_tags = []
labels_correspondent = []
labels_document_type = []
labels_storage_path = []
# Step 1: Extract and preprocess training data from the database.
logger.debug("Gathering data from database...")
hasher = sha256()
for doc in docs_queryset:
y = -1
dt = doc.document_type
if dt and dt.matching_algorithm == MatchingModel.MATCH_AUTO:
y = dt.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_document_type.append(y)
y = -1
cor = doc.correspondent
if cor and cor.matching_algorithm == MatchingModel.MATCH_AUTO:
y = cor.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_correspondent.append(y)
tags = sorted(
tag.pk
for tag in doc.tags.filter(
matching_algorithm=MatchingModel.MATCH_AUTO,
)
)
for tag in tags:
hasher.update(tag.to_bytes(4, "little", signed=True))
labels_tags.append(tags)
y = -1
sp = doc.storage_path
if sp and sp.matching_algorithm == MatchingModel.MATCH_AUTO:
y = sp.pk
hasher.update(y.to_bytes(4, "little", signed=True))
labels_storage_path.append(y)
labels_tags_unique = {tag for tags in labels_tags for tag in tags}
num_tags = len(labels_tags_unique)
# Check if retraining is actually required.
# A document has been updated since the classifier was trained
# New auto tags, types, correspondent, storage paths exist
latest_doc_change = docs_queryset.latest("modified").modified
if (
self.last_doc_change_time is not None
and self.last_doc_change_time >= latest_doc_change
) and self.last_auto_type_hash == hasher.digest():
return False
# substract 1 since -1 (null) is also part of the classes.
# union with {-1} accounts for cases where all documents have
# correspondents and types assigned, so -1 isnt part of labels_x, which
# it usually is.
num_correspondents = len(set(labels_correspondent) | {-1}) - 1
num_document_types = len(set(labels_document_type) | {-1}) - 1
num_storage_paths = len(set(labels_storage_path) | {-1}) - 1
logger.debug(
"{} documents, {} tag(s), {} correspondent(s), "
"{} document type(s). {} storage path(es)".format(
docs_queryset.count(),
num_tags,
num_correspondents,
num_document_types,
num_storage_paths,
),
)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer
# Step 2: vectorize data
logger.debug("Vectorizing data...")
def content_generator() -> Iterator[str]:
"""
Generates the content for documents, but once at a time
"""
for doc in docs_queryset:
yield self.preprocess_content(doc.content)
self.data_vectorizer = CountVectorizer(
analyzer="word",
ngram_range=(1, 2),
min_df=0.01,
)
data_vectorized = self.data_vectorizer.fit_transform(content_generator())
# See the notes here:
# https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html # noqa: 501
# This attribute isn't needed to function and can be large
self.data_vectorizer.stop_words_ = None
# Step 3: train the classifiers
if num_tags > 0:
logger.debug("Training tags classifier...")
if num_tags == 1:
# Special case where only one tag has auto:
# Fallback to binary classification.
labels_tags = [
label[0] if len(label) == 1 else -1 for label in labels_tags
]
self.tags_binarizer = LabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(
labels_tags,
).ravel()
else:
self.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
self.tags_classifier = MLPClassifier(tol=0.01)
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
self.tags_classifier = None
logger.debug("There are no tags. Not training tags classifier.")
if num_correspondents > 0:
logger.debug("Training correspondent classifier...")
self.correspondent_classifier = MLPClassifier(tol=0.01)
self.correspondent_classifier.fit(data_vectorized, labels_correspondent)
else:
self.correspondent_classifier = None
logger.debug(
"There are no correspondents. Not training correspondent "
"classifier.",
)
if num_document_types > 0:
logger.debug("Training document type classifier...")
self.document_type_classifier = MLPClassifier(tol=0.01)
self.document_type_classifier.fit(data_vectorized, labels_document_type)
else:
self.document_type_classifier = None
logger.debug(
"There are no document types. Not training document type "
"classifier.",
)
if num_storage_paths > 0:
logger.debug(
"Training storage paths classifier...",
)
self.storage_path_classifier = MLPClassifier(tol=0.01)
self.storage_path_classifier.fit(
data_vectorized,
labels_storage_path,
)
else:
self.storage_path_classifier = None
logger.debug(
"There are no storage paths. Not training storage path classifier.",
)
self.last_doc_change_time = latest_doc_change
self.last_auto_type_hash = hasher.digest()
return True
def preprocess_content(self, content: str) -> str: # pragma: nocover
"""
Process to contents of a document, distilling it down into
words which are meaningful to the content
"""
# Lower case the document
content = content.lower().strip()
# Reduce spaces
content = re.sub(r"\s+", " ", content)
# Get only the letters
content = re.sub(r"[^\w\s]", " ", content)
# If the NLTK language is supported, do further processing
if settings.NLTK_LANGUAGE is not None and settings.NLTK_ENABLED:
import nltk
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
from nltk.tokenize import word_tokenize
# Not really hacky, since it isn't private and is documented, but
# set the search path for NLTK data to the single location it should be in
nltk.data.path = [settings.NLTK_DIR]
# Do some one time setup
if self._stemmer is None:
self._stemmer = SnowballStemmer(settings.NLTK_LANGUAGE)
if self._stop_words is None:
self._stop_words = set(stopwords.words(settings.NLTK_LANGUAGE))
# Tokenize
words: List[str] = word_tokenize(content, language=settings.NLTK_LANGUAGE)
# Remove stop words
meaningful_words = [w for w in words if w not in self._stop_words]
# Stem words
meaningful_words = [self._stemmer.stem(w) for w in meaningful_words]
return " ".join(meaningful_words)
return content
def predict_correspondent(self, content: str):
if self.correspondent_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
correspondent_id = self.correspondent_classifier.predict(X)
if correspondent_id != -1:
return correspondent_id
else:
return None
else:
return None
def predict_document_type(self, content: str):
if self.document_type_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
document_type_id = self.document_type_classifier.predict(X)
if document_type_id != -1:
return document_type_id
else:
return None
else:
return None
def predict_tags(self, content: str):
from sklearn.utils.multiclass import type_of_target
if self.tags_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
y = self.tags_classifier.predict(X)
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
if type_of_target(y).startswith("multilabel"):
# the usual case when there are multiple tags.
return list(tags_ids)
elif type_of_target(y) == "binary" and tags_ids != -1:
# This is for when we have binary classification with only one
# tag and the result is to assign this tag.
return [tags_ids]
else:
# Usually binary as well with -1 as the result, but we're
# going to catch everything else here as well.
return []
else:
return []
def predict_storage_path(self, content: str):
if self.storage_path_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
storage_path_id = self.storage_path_classifier.predict(X)
if storage_path_id != -1:
return storage_path_id
else:
return None
else:
return None