2016-03-07 21:08:07 +02:00

341 lines
10 KiB
Python

import datetime
import logging
import tempfile
import uuid
from multiprocessing.pool import Pool
import itertools
import langdetect
import os
import re
import subprocess
import pyocr
import shutil
from PIL import Image
from django.conf import settings
from django.utils import timezone
from django.template.defaultfilters import slugify
from pyocr.tesseract import TesseractError
from paperless.db import GnuPG
from .models import Correspondent, Tag, Document, Log, FileInfo
from .languages import ISO639
class OCRError(Exception):
pass
class ConsumerError(Exception):
pass
class Consumer(object):
"""
Loop over every file found in CONSUMPTION_DIR and:
1. Convert it to a greyscale pnm
2. Use tesseract on the pnm
3. Encrypt and store the document in the MEDIA_ROOT
4. Store the OCR'd text in the database
5. Delete the document and image(s)
"""
SCRATCH = settings.SCRATCH_DIR
CONVERT = settings.CONVERT_BINARY
UNPAPER = settings.UNPAPER_BINARY
CONSUME = settings.CONSUMPTION_DIR
THREADS = int(settings.OCR_THREADS) if settings.OCR_THREADS else None
DEFAULT_OCR_LANGUAGE = settings.OCR_LANGUAGE
def __init__(self):
self.logger = logging.getLogger(__name__)
self.logging_group = None
try:
os.makedirs(self.SCRATCH)
except FileExistsError:
pass
self.stats = {}
self._ignore = []
if not self.CONSUME:
raise ConsumerError(
"The CONSUMPTION_DIR settings variable does not appear to be "
"set."
)
if not os.path.exists(self.CONSUME):
raise ConsumerError(
"Consumption directory {} does not exist".format(self.CONSUME))
def log(self, level, message):
getattr(self.logger, level)(message, extra={
"group": self.logging_group,
"component": Log.COMPONENT_CONSUMER
})
def consume(self):
for doc in os.listdir(self.CONSUME):
doc = os.path.join(self.CONSUME, doc)
if not os.path.isfile(doc):
continue
if not re.match(FileInfo.REGEX_TITLE, doc):
continue
if doc in self._ignore:
continue
if self._is_ready(doc):
continue
self.logging_group = uuid.uuid4()
self.log("info", "Consuming {}".format(doc))
tempdir = tempfile.mkdtemp(prefix="paperless", dir=self.SCRATCH)
imgs = self._get_greyscale(tempdir, doc)
thumbnail = self._get_thumbnail(tempdir, doc)
try:
text = self._get_ocr(imgs)
self._store(text, doc, thumbnail)
except OCRError as e:
self._ignore.append(doc)
self.log("error", "OCR FAILURE for {}: {}".format(doc, e))
self._cleanup_tempdir(tempdir)
continue
else:
self._cleanup_tempdir(tempdir)
self._cleanup_doc(doc)
def _get_greyscale(self, tempdir, doc):
"""
Greyscale images are easier for Tesseract to OCR
"""
self.log("info", "Generating greyscale image from {}".format(doc))
# Convert PDF to multiple PNMs
pnm = os.path.join(tempdir, "convert-%04d.pnm")
subprocess.Popen((
self.CONVERT, "-density", "300", "-depth", "8",
"-type", "grayscale", doc, pnm
)).wait()
# Get a list of converted images
pnms = []
for f in os.listdir(tempdir):
if f.endswith(".pnm"):
pnms.append(os.path.join(tempdir, f))
# Run unpaper in parallel on converted images
with Pool(processes=self.THREADS) as pool:
pool.map(run_unpaper, itertools.product([self.UNPAPER], pnms))
# Return list of converted images, processed with unpaper
pnms = []
for f in os.listdir(tempdir):
if f.endswith(".unpaper.pnm"):
pnms.append(os.path.join(tempdir, f))
return sorted(filter(lambda __: os.path.isfile(__), pnms))
def _get_thumbnail(self, tempdir, doc):
"""
The thumbnail of a PDF is just a 500px wide image of the first page.
"""
self.log("info", "Generating the thumbnail")
subprocess.Popen((
self.CONVERT,
"-scale", "500x5000",
"-alpha", "remove",
doc,
os.path.join(tempdir, "convert-%04d.png")
)).wait()
return os.path.join(tempdir, "convert-0000.png")
def _guess_language(self, text):
try:
guess = langdetect.detect(text)
self.log("debug", "Language detected: {}".format(guess))
return guess
except Exception as e:
self.log("warning", "Language detection error: {}".format(e))
def _get_ocr(self, imgs):
"""
Attempts to do the best job possible OCR'ing the document based on
simple language detection trial & error.
"""
if not imgs:
raise OCRError("No images found")
self.log("info", "OCRing the document")
# Since the division gets rounded down by int, this calculation works
# for every edge-case, i.e. 1
middle = int(len(imgs) / 2)
raw_text = self._ocr([imgs[middle]], self.DEFAULT_OCR_LANGUAGE)
guessed_language = self._guess_language(raw_text)
if not guessed_language or guessed_language not in ISO639:
self.log("warning", "Language detection failed!")
if settings.FORGIVING_OCR:
self.log(
"warning",
"As FORGIVING_OCR is enabled, we're going to make the "
"best with what we have."
)
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
raise OCRError("Language detection failed")
if ISO639[guessed_language] == self.DEFAULT_OCR_LANGUAGE:
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
try:
return self._ocr(imgs, ISO639[guessed_language])
except pyocr.pyocr.tesseract.TesseractError:
if settings.FORGIVING_OCR:
self.log(
"warning",
"OCR for {} failed, but we're going to stick with what "
"we've got since FORGIVING_OCR is enabled.".format(
guessed_language
)
)
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
raise OCRError(
"The guessed language is not available in this instance of "
"Tesseract."
)
def _assemble_ocr_sections(self, imgs, middle, text):
"""
Given a `middle` value and the text that middle page represents, we OCR
the remainder of the document and return the whole thing.
"""
text = self._ocr(imgs[:middle], self.DEFAULT_OCR_LANGUAGE) + text
text += self._ocr(imgs[middle + 1:], self.DEFAULT_OCR_LANGUAGE)
return text
def _ocr(self, imgs, lang):
"""
Performs a single OCR attempt.
"""
if not imgs:
return ""
self.log("info", "Parsing for {}".format(lang))
with Pool(processes=self.THREADS) as pool:
r = pool.map(image_to_string, itertools.product(imgs, [lang]))
r = " ".join(r)
# Strip out excess white space to allow matching to go smoother
return re.sub(r"\s+", " ", r)
def _store(self, text, doc, thumbnail):
file_info = FileInfo.from_path(doc)
relevant_tags = set(list(Tag.match_all(text)) + list(file_info.tags))
stats = os.stat(doc)
self.log("debug", "Saving record to database")
document = Document.objects.create(
correspondent=file_info.correspondent,
title=file_info.title,
content=text,
file_type=file_info.suffix,
created=timezone.make_aware(
datetime.datetime.fromtimestamp(stats.st_mtime)),
modified=timezone.make_aware(
datetime.datetime.fromtimestamp(stats.st_mtime))
)
if relevant_tags:
tag_names = ", ".join([t.slug for t in relevant_tags])
self.log("debug", "Tagging with {}".format(tag_names))
document.tags.add(*relevant_tags)
# Encrypt and store the actual document
with open(doc, "rb") as unencrypted:
with open(document.source_path, "wb") as encrypted:
self.log("debug", "Encrypting the document")
encrypted.write(GnuPG.encrypted(unencrypted))
# Encrypt and store the thumbnail
with open(thumbnail, "rb") as unencrypted:
with open(document.thumbnail_path, "wb") as encrypted:
self.log("debug", "Encrypting the thumbnail")
encrypted.write(GnuPG.encrypted(unencrypted))
self.log("info", "Completed")
def _cleanup_tempdir(self, d):
self.log("debug", "Deleting directory {}".format(d))
shutil.rmtree(d)
def _cleanup_doc(self, doc):
self.log("debug", "Deleting document {}".format(doc))
os.unlink(doc)
def _is_ready(self, doc):
"""
Detect whether `doc` is ready to consume or if it's still being written
to by the uploader.
"""
t = os.stat(doc).st_mtime
if self.stats.get(doc) == t:
del(self.stats[doc])
return True
self.stats[doc] = t
return False
def image_to_string(args):
img, lang = args
ocr = pyocr.get_available_tools()[0]
with Image.open(os.path.join(Consumer.SCRATCH, img)) as f:
if ocr.can_detect_orientation():
try:
orientation = ocr.detect_orientation(f, lang=lang)
f = f.rotate(orientation["angle"], expand=1)
except TesseractError:
pass
return ocr.image_to_string(f, lang=lang)
def run_unpaper(args):
unpaper, pnm = args
subprocess.Popen((
unpaper, pnm, pnm.replace(".pnm", ".unpaper.pnm")
)).wait()