Daniel Quinn d2c283582b feat: refactor for pluggable consumers
I've broken out the OCR-specific code from the consumers and dumped it
all into its own app, `paperless_tesseract`.  This new app should serve
as a sample of how to create one's own consumer for different file
types.

Documentation for how to do this isn't ready yet, but for the impatient:

* Create a new app
    * containing a `parsers.py` for your parser modelled after
      `paperless_tesseract.parsers.RasterisedDocumentParser`
    * containing a `signals.py` with a handler moddelled after
      `paperless_tesseract.signals.ConsumerDeclaration`
    * connect the signal handler to
      `documents.signals.document_consumer_declaration` in
      `your_app.apps`
* Install the app into Paperless by declaring
  `PAPERLESS_INSTALLED_APPS=your_app`.  Additional apps should be
  separated with commas.
* Restart the consumer
2017-03-25 15:10:25 +00:00

215 lines
6.8 KiB
Python

import itertools
import os
import re
import subprocess
from multiprocessing.pool import Pool
import langdetect
import pyocr
from django.conf import settings
from documents.parsers import DocumentParser, ParseError
from PIL import Image
from pyocr.libtesseract.tesseract_raw import \
TesseractError as OtherTesseractError
from pyocr.tesseract import TesseractError
from .languages import ISO639
class OCRError(Exception):
pass
class RasterisedDocumentParser(DocumentParser):
"""
This parser uses Tesseract to try and get some text out of a rasterised
image, whether it's a PDF, or other graphical format (JPEG, TIFF, etc.)
"""
CONVERT = settings.CONVERT_BINARY
DENSITY = settings.CONVERT_DENSITY if settings.CONVERT_DENSITY else 300
THREADS = int(settings.OCR_THREADS) if settings.OCR_THREADS else None
UNPAPER = settings.UNPAPER_BINARY
DEFAULT_OCR_LANGUAGE = settings.OCR_LANGUAGE
def get_thumbnail(self):
"""
The thumbnail of a PDF is just a 500px wide image of the first page.
"""
run_convert(
self.CONVERT,
"-scale", "500x5000",
"-alpha", "remove",
self.document_path, os.path.join(self.tempdir, "convert-%04d.png")
)
return os.path.join(self.tempdir, "convert-0000.png")
def get_text(self):
images = self._get_greyscale()
try:
return self._get_ocr(images)
except OCRError as e:
raise ParseError(e)
def _get_greyscale(self):
"""
Greyscale images are easier for Tesseract to OCR
"""
# Convert PDF to multiple PNMs
pnm = os.path.join(self.tempdir, "convert-%04d.pnm")
run_convert(
self.CONVERT,
"-density", str(self.DENSITY),
"-depth", "8",
"-type", "grayscale",
self.document_path, pnm,
)
# Get a list of converted images
pnms = []
for f in os.listdir(self.tempdir):
if f.endswith(".pnm"):
pnms.append(os.path.join(self.tempdir, f))
# Run unpaper in parallel on converted images
with Pool(processes=self.THREADS) as pool:
pool.map(run_unpaper, itertools.product([self.UNPAPER], pnms))
# Return list of converted images, processed with unpaper
pnms = []
for f in os.listdir(self.tempdir):
if f.endswith(".unpaper.pnm"):
pnms.append(os.path.join(self.tempdir, f))
return sorted(filter(lambda __: os.path.isfile(__), pnms))
def _guess_language(self, text):
try:
guess = langdetect.detect(text)
self.log("debug", "Language detected: {}".format(guess))
return guess
except Exception as e:
self.log("warning", "Language detection error: {}".format(e))
def _get_ocr(self, imgs):
"""
Attempts to do the best job possible OCR'ing the document based on
simple language detection trial & error.
"""
if not imgs:
raise OCRError("No images found")
self.log("info", "OCRing the document")
# Since the division gets rounded down by int, this calculation works
# for every edge-case, i.e. 1
middle = int(len(imgs) / 2)
raw_text = self._ocr([imgs[middle]], self.DEFAULT_OCR_LANGUAGE)
guessed_language = self._guess_language(raw_text)
if not guessed_language or guessed_language not in ISO639:
self.log("warning", "Language detection failed!")
if settings.FORGIVING_OCR:
self.log(
"warning",
"As FORGIVING_OCR is enabled, we're going to make the "
"best with what we have."
)
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
raise OCRError("Language detection failed")
if ISO639[guessed_language] == self.DEFAULT_OCR_LANGUAGE:
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
try:
return self._ocr(imgs, ISO639[guessed_language])
except pyocr.pyocr.tesseract.TesseractError:
if settings.FORGIVING_OCR:
self.log(
"warning",
"OCR for {} failed, but we're going to stick with what "
"we've got since FORGIVING_OCR is enabled.".format(
guessed_language
)
)
raw_text = self._assemble_ocr_sections(imgs, middle, raw_text)
return raw_text
raise OCRError(
"The guessed language is not available in this instance of "
"Tesseract."
)
def _ocr(self, imgs, lang):
"""
Performs a single OCR attempt.
"""
if not imgs:
return ""
self.log("info", "Parsing for {}".format(lang))
with Pool(processes=self.THREADS) as pool:
r = pool.map(image_to_string, itertools.product(imgs, [lang]))
r = " ".join(r)
# Strip out excess white space to allow matching to go smoother
return strip_excess_whitespace(r)
def _assemble_ocr_sections(self, imgs, middle, text):
"""
Given a `middle` value and the text that middle page represents, we OCR
the remainder of the document and return the whole thing.
"""
text = self._ocr(imgs[:middle], self.DEFAULT_OCR_LANGUAGE) + text
text += self._ocr(imgs[middle + 1:], self.DEFAULT_OCR_LANGUAGE)
return text
def run_convert(*args):
environment = os.environ.copy()
if settings.CONVERT_MEMORY_LIMIT:
environment["MAGICK_MEMORY_LIMIT"] = settings.CONVERT_MEMORY_LIMIT
if settings.CONVERT_TMPDIR:
environment["MAGICK_TMPDIR"] = settings.CONVERT_TMPDIR
subprocess.Popen(args, env=environment).wait()
def run_unpaper(args):
unpaper, pnm = args
subprocess.Popen(
(unpaper, pnm, pnm.replace(".pnm", ".unpaper.pnm"))).wait()
def strip_excess_whitespace(text):
collapsed_spaces = re.sub(r"([^\S\r\n]+)", " ", text)
no_leading_whitespace = re.sub(
"([\n\r]+)([^\S\n\r]+)", '\\1', collapsed_spaces)
no_trailing_whitespace = re.sub("([^\S\n\r]+)$", '', no_leading_whitespace)
return no_trailing_whitespace
def image_to_string(args):
img, lang = args
ocr = pyocr.get_available_tools()[0]
with Image.open(os.path.join(RasterisedDocumentParser.SCRATCH, img)) as f:
if ocr.can_detect_orientation():
try:
orientation = ocr.detect_orientation(f, lang=lang)
f = f.rotate(orientation["angle"], expand=1)
except (TesseractError, OtherTesseractError):
pass
return ocr.image_to_string(f, lang=lang)