2020-11-21 14:03:45 +01:00

102 lines
3.3 KiB
Python

import re
from fuzzywuzzy import fuzz
from documents.models import MatchingModel, Correspondent, DocumentType, Tag
def match_correspondents(document_content, classifier):
if classifier:
pred_id = classifier.predict_correspondent(document_content)
else:
pred_id = None
correspondents = Correspondent.objects.all()
return [o for o in correspondents if matches(o, document_content) or o.pk == pred_id]
def match_document_types(document_content, classifier):
if classifier:
pred_id = classifier.predict_document_type(document_content)
else:
pred_id = None
document_types = DocumentType.objects.all()
return [o for o in document_types if matches(o, document_content) or o.pk == pred_id]
def match_tags(document_content, classifier):
objects = Tag.objects.all()
predicted_tag_ids = classifier.predict_tags(document_content) if classifier else []
matched_tags = [o for o in objects if matches(o, document_content) or o.pk in predicted_tag_ids]
return matched_tags
def matches(matching_model, document_content):
search_kwargs = {}
document_content = document_content.lower()
# Check that match is not empty
if matching_model.match.strip() == "":
return False
if matching_model.is_insensitive:
search_kwargs = {"flags": re.IGNORECASE}
if matching_model.matching_algorithm == MatchingModel.MATCH_ALL:
for word in _split_match(matching_model):
search_result = re.search(
r"\b{}\b".format(word), document_content, **search_kwargs)
if not search_result:
return False
return True
if matching_model.matching_algorithm == MatchingModel.MATCH_ANY:
for word in _split_match(matching_model):
if re.search(r"\b{}\b".format(word), document_content, **search_kwargs):
return True
return False
if matching_model.matching_algorithm == MatchingModel.MATCH_LITERAL:
return bool(re.search(
r"\b{}\b".format(matching_model.match), document_content, **search_kwargs))
if matching_model.matching_algorithm == MatchingModel.MATCH_REGEX:
return bool(re.search(
re.compile(matching_model.match, **search_kwargs), document_content))
if matching_model.matching_algorithm == MatchingModel.MATCH_FUZZY:
match = re.sub(r'[^\w\s]', '', matching_model.match)
text = re.sub(r'[^\w\s]', '', document_content)
if matching_model.is_insensitive:
match = match.lower()
text = text.lower()
return True if fuzz.partial_ratio(match, text) >= 90 else False
if matching_model.matching_algorithm == MatchingModel.MATCH_AUTO:
# this is done elsewhere.
return False
raise NotImplementedError("Unsupported matching algorithm")
def _split_match(matching_model):
"""
Splits the match to individual keywords, getting rid of unnecessary
spaces and grouping quoted words together.
Example:
' some random words "with quotes " and spaces'
==>
["some", "random", "words", "with+quotes", "and", "spaces"]
"""
findterms = re.compile(r'"([^"]+)"|(\S+)').findall
normspace = re.compile(r"\s+").sub
return [
normspace(" ", (t[0] or t[1]).strip()).replace(" ", r"\s+")
for t in findterms(matching_model.match)
]