2023-04-26 09:42:03 -07:00

216 lines
6.5 KiB
Python

import logging
import re
from documents.models import Correspondent
from documents.models import DocumentType
from documents.models import MatchingModel
from documents.models import StoragePath
from documents.models import Tag
from documents.permissions import get_objects_for_user_owner_aware
logger = logging.getLogger("paperless.matching")
def log_reason(matching_model, document, reason):
class_name = type(matching_model).__name__
logger.debug(
f"{class_name} {matching_model.name} matched on document "
f"{document} because {reason}",
)
def match_correspondents(document, classifier, user=None):
pred_id = classifier.predict_correspondent(document.content) if classifier else None
if user is None and document.owner is not None:
user = document.owner
if user is not None:
correspondents = get_objects_for_user_owner_aware(
user,
"documents.view_correspondent",
Correspondent,
)
else:
correspondents = Correspondent.objects.all()
return list(
filter(lambda o: matches(o, document) or o.pk == pred_id, correspondents),
)
def match_document_types(document, classifier, user=None):
pred_id = classifier.predict_document_type(document.content) if classifier else None
if user is None and document.owner is not None:
user = document.owner
if user is not None:
document_types = get_objects_for_user_owner_aware(
user,
"documents.view_documenttype",
DocumentType,
)
else:
document_types = DocumentType.objects.all()
return list(
filter(lambda o: matches(o, document) or o.pk == pred_id, document_types),
)
def match_tags(document, classifier, user=None):
predicted_tag_ids = classifier.predict_tags(document.content) if classifier else []
if user is None and document.owner is not None:
user = document.owner
if user is not None:
tags = get_objects_for_user_owner_aware(user, "documents.view_tag", Tag)
else:
tags = Tag.objects.all()
return list(
filter(lambda o: matches(o, document) or o.pk in predicted_tag_ids, tags),
)
def match_storage_paths(document, classifier, user=None):
pred_id = classifier.predict_storage_path(document.content) if classifier else None
if user is None and document.owner is not None:
user = document.owner
if user is not None:
storage_paths = get_objects_for_user_owner_aware(
user,
"documents.view_storagepath",
StoragePath,
)
else:
storage_paths = StoragePath.objects.all()
return list(
filter(
lambda o: matches(o, document) or o.pk == pred_id,
storage_paths,
),
)
def matches(matching_model, document):
search_kwargs = {}
document_content = document.content
# Check that match is not empty
if not matching_model.match.strip():
return False
if matching_model.is_insensitive:
search_kwargs = {"flags": re.IGNORECASE}
if matching_model.matching_algorithm == MatchingModel.MATCH_NONE:
return False
elif matching_model.matching_algorithm == MatchingModel.MATCH_ALL:
for word in _split_match(matching_model):
search_result = re.search(rf"\b{word}\b", document_content, **search_kwargs)
if not search_result:
return False
log_reason(
matching_model,
document,
f"it contains all of these words: {matching_model.match}",
)
return True
elif matching_model.matching_algorithm == MatchingModel.MATCH_ANY:
for word in _split_match(matching_model):
if re.search(rf"\b{word}\b", document_content, **search_kwargs):
log_reason(matching_model, document, f"it contains this word: {word}")
return True
return False
elif matching_model.matching_algorithm == MatchingModel.MATCH_LITERAL:
result = bool(
re.search(
rf"\b{re.escape(matching_model.match)}\b",
document_content,
**search_kwargs,
),
)
if result:
log_reason(
matching_model,
document,
f'it contains this string: "{matching_model.match}"',
)
return result
elif matching_model.matching_algorithm == MatchingModel.MATCH_REGEX:
try:
match = re.search(
re.compile(matching_model.match, **search_kwargs),
document_content,
)
except re.error:
logger.error(
f"Error while processing regular expression {matching_model.match}",
)
return False
if match:
log_reason(
matching_model,
document,
f"the string {match.group()} matches the regular expression "
f"{matching_model.match}",
)
return bool(match)
elif matching_model.matching_algorithm == MatchingModel.MATCH_FUZZY:
from rapidfuzz import fuzz
match = re.sub(r"[^\w\s]", "", matching_model.match)
text = re.sub(r"[^\w\s]", "", document_content)
if matching_model.is_insensitive:
match = match.lower()
text = text.lower()
if fuzz.partial_ratio(match, text, score_cutoff=90):
# TODO: make this better
log_reason(
matching_model,
document,
f"parts of the document content somehow match the string "
f"{matching_model.match}",
)
return True
else:
return False
elif matching_model.matching_algorithm == MatchingModel.MATCH_AUTO:
# this is done elsewhere.
return False
else:
raise NotImplementedError("Unsupported matching algorithm")
def _split_match(matching_model):
"""
Splits the match to individual keywords, getting rid of unnecessary
spaces and grouping quoted words together.
Example:
' some random words "with quotes " and spaces'
==>
["some", "random", "words", "with+quotes", "and", "spaces"]
"""
findterms = re.compile(r'"([^"]+)"|(\S+)').findall
normspace = re.compile(r"\s+").sub
return [
# normspace(" ", (t[0] or t[1]).strip()).replace(" ", r"\s+")
re.escape(normspace(" ", (t[0] or t[1]).strip())).replace(r"\ ", r"\s+")
for t in findterms(matching_model.match)
]