paperless-ngx/src/documents/classifier.py

385 lines
14 KiB
Python

import hashlib
import logging
import os
import pickle
import re
import shutil
import warnings
from typing import List
from typing import Optional
from django.conf import settings
from documents.models import Document
from documents.models import MatchingModel
logger = logging.getLogger("paperless.classifier")
class IncompatibleClassifierVersionError(Exception):
pass
class ClassifierModelCorruptError(Exception):
pass
def load_classifier() -> Optional["DocumentClassifier"]:
if not os.path.isfile(settings.MODEL_FILE):
logger.debug(
"Document classification model does not exist (yet), not "
"performing automatic matching.",
)
return None
classifier = DocumentClassifier()
try:
classifier.load()
except IncompatibleClassifierVersionError:
logger.info("Classifier version updated, will re-train")
os.unlink(settings.MODEL_FILE)
classifier = None
except ClassifierModelCorruptError:
# there's something wrong with the model file.
logger.exception(
"Unrecoverable error while loading document "
"classification model, deleting model file.",
)
os.unlink(settings.MODEL_FILE)
classifier = None
except OSError:
logger.exception("IO error while loading document classification model")
classifier = None
except Exception:
logger.exception("Unknown error while loading document classification model")
classifier = None
return classifier
class DocumentClassifier:
# v7 - Updated scikit-learn package version
# v8 - Added storage path classifier
FORMAT_VERSION = 8
def __init__(self):
# hash of the training data. used to prevent re-training when the
# training data has not changed.
self.data_hash: Optional[bytes] = None
self.data_vectorizer = None
self.tags_binarizer = None
self.tags_classifier = None
self.correspondent_classifier = None
self.document_type_classifier = None
self.storage_path_classifier = None
self.stemmer = None
def load(self):
# Catch warnings for processing
with warnings.catch_warnings(record=True) as w:
with open(settings.MODEL_FILE, "rb") as f:
schema_version = pickle.load(f)
if schema_version != self.FORMAT_VERSION:
raise IncompatibleClassifierVersionError(
"Cannot load classifier, incompatible versions.",
)
else:
try:
self.data_hash = pickle.load(f)
self.data_vectorizer = pickle.load(f)
self.tags_binarizer = pickle.load(f)
self.tags_classifier = pickle.load(f)
self.correspondent_classifier = pickle.load(f)
self.document_type_classifier = pickle.load(f)
self.storage_path_classifier = pickle.load(f)
except Exception as err:
raise ClassifierModelCorruptError() from err
# Check for the warning about unpickling from differing versions
# and consider it incompatible
sk_learn_warning_url = (
"https://scikit-learn.org/stable/"
"model_persistence.html"
"#security-maintainability-limitations"
)
for warning in w:
if issubclass(warning.category, UserWarning):
w_msg = str(warning.message)
if sk_learn_warning_url in w_msg:
raise IncompatibleClassifierVersionError()
def save(self):
target_file = settings.MODEL_FILE
target_file_temp = settings.MODEL_FILE + ".part"
with open(target_file_temp, "wb") as f:
pickle.dump(self.FORMAT_VERSION, f)
pickle.dump(self.data_hash, f)
pickle.dump(self.data_vectorizer, f)
pickle.dump(self.tags_binarizer, f)
pickle.dump(self.tags_classifier, f)
pickle.dump(self.correspondent_classifier, f)
pickle.dump(self.document_type_classifier, f)
pickle.dump(self.storage_path_classifier, f)
if os.path.isfile(target_file):
os.unlink(target_file)
shutil.move(target_file_temp, target_file)
def train(self):
data = []
labels_tags = []
labels_correspondent = []
labels_document_type = []
labels_storage_path = []
# Step 1: Extract and preprocess training data from the database.
logger.debug("Gathering data from database...")
m = hashlib.sha1()
for doc in Document.objects.order_by("pk").exclude(
tags__is_inbox_tag=True,
):
preprocessed_content = self.preprocess_content(doc.content)
m.update(preprocessed_content.encode("utf-8"))
data.append(preprocessed_content)
y = -1
dt = doc.document_type
if dt and dt.matching_algorithm == MatchingModel.MATCH_AUTO:
y = dt.pk
m.update(y.to_bytes(4, "little", signed=True))
labels_document_type.append(y)
y = -1
cor = doc.correspondent
if cor and cor.matching_algorithm == MatchingModel.MATCH_AUTO:
y = cor.pk
m.update(y.to_bytes(4, "little", signed=True))
labels_correspondent.append(y)
tags = sorted(
tag.pk
for tag in doc.tags.filter(
matching_algorithm=MatchingModel.MATCH_AUTO,
)
)
for tag in tags:
m.update(tag.to_bytes(4, "little", signed=True))
labels_tags.append(tags)
y = -1
sd = doc.storage_path
if sd and sd.matching_algorithm == MatchingModel.MATCH_AUTO:
y = sd.pk
m.update(y.to_bytes(4, "little", signed=True))
labels_storage_path.append(y)
if not data:
raise ValueError("No training data available.")
new_data_hash = m.digest()
if self.data_hash and new_data_hash == self.data_hash:
return False
labels_tags_unique = {tag for tags in labels_tags for tag in tags}
num_tags = len(labels_tags_unique)
# substract 1 since -1 (null) is also part of the classes.
# union with {-1} accounts for cases where all documents have
# correspondents and types assigned, so -1 isnt part of labels_x, which
# it usually is.
num_correspondents = len(set(labels_correspondent) | {-1}) - 1
num_document_types = len(set(labels_document_type) | {-1}) - 1
num_storage_paths = len(set(labels_storage_path) | {-1}) - 1
logger.debug(
"{} documents, {} tag(s), {} correspondent(s), "
"{} document type(s). {} storage path(es)".format(
len(data),
num_tags,
num_correspondents,
num_document_types,
num_storage_paths,
),
)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
# Step 2: vectorize data
logger.debug("Vectorizing data...")
self.data_vectorizer = CountVectorizer(
analyzer="word",
ngram_range=(1, 2),
min_df=0.01,
)
data_vectorized = self.data_vectorizer.fit_transform(data)
# See the notes here:
# https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html # noqa: 501
# This attribute isn't needed to function and can be large
self.data_vectorizer.stop_words_ = None
# Step 3: train the classifiers
if num_tags > 0:
logger.debug("Training tags classifier...")
if num_tags == 1:
# Special case where only one tag has auto:
# Fallback to binary classification.
labels_tags = [
label[0] if len(label) == 1 else -1 for label in labels_tags
]
self.tags_binarizer = LabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(
labels_tags,
).ravel()
else:
self.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
self.tags_classifier = MLPClassifier(tol=0.01)
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
self.tags_classifier = None
logger.debug("There are no tags. Not training tags classifier.")
if num_correspondents > 0:
logger.debug("Training correspondent classifier...")
self.correspondent_classifier = MLPClassifier(tol=0.01)
self.correspondent_classifier.fit(data_vectorized, labels_correspondent)
else:
self.correspondent_classifier = None
logger.debug(
"There are no correspondents. Not training correspondent "
"classifier.",
)
if num_document_types > 0:
logger.debug("Training document type classifier...")
self.document_type_classifier = MLPClassifier(tol=0.01)
self.document_type_classifier.fit(data_vectorized, labels_document_type)
else:
self.document_type_classifier = None
logger.debug(
"There are no document types. Not training document type "
"classifier.",
)
if num_storage_paths > 0:
logger.debug(
"Training storage paths classifier...",
)
self.storage_path_classifier = MLPClassifier(tol=0.01)
self.storage_path_classifier.fit(
data_vectorized,
labels_storage_path,
)
else:
self.storage_path_classifier = None
logger.debug(
"There are no storage paths. Not training storage path classifier.",
)
self.data_hash = new_data_hash
return True
def preprocess_content(self, content: str) -> str:
"""
Process to contents of a document, distilling it down into
words which are meaningful to the content
"""
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
import nltk
# Not really hacky, since it isn't private and is documented, but
# set the search path for NLTK data to the single location it should be in
nltk.data.path = [settings.NLTK_DIR]
if self.stemmer is None:
self.stemmer = SnowballStemmer("english")
# Lower case the document
content = content.lower().strip()
# Get only the letters (remove punctuation too)
content = re.sub(r"[^\w\s]", " ", content)
# Tokenize
words: List[str] = word_tokenize(content, language=settings.NLTK_LANGUAGE)
# Remove stop words
stops = set(stopwords.words(settings.NLTK_LANGUAGE))
meaningful_words = [w for w in words if w not in stops]
# Stem words
meaningful_words = [self.stemmer.stem(w) for w in meaningful_words]
return " ".join(meaningful_words)
def predict_correspondent(self, content):
if self.correspondent_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
correspondent_id = self.correspondent_classifier.predict(X)
if correspondent_id != -1:
return correspondent_id
else:
return None
else:
return None
def predict_document_type(self, content):
if self.document_type_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
document_type_id = self.document_type_classifier.predict(X)
if document_type_id != -1:
return document_type_id
else:
return None
else:
return None
def predict_tags(self, content):
from sklearn.utils.multiclass import type_of_target
if self.tags_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
y = self.tags_classifier.predict(X)
tags_ids = self.tags_binarizer.inverse_transform(y)[0]
if type_of_target(y).startswith("multilabel"):
# the usual case when there are multiple tags.
return list(tags_ids)
elif type_of_target(y) == "binary" and tags_ids != -1:
# This is for when we have binary classification with only one
# tag and the result is to assign this tag.
return [tags_ids]
else:
# Usually binary as well with -1 as the result, but we're
# going to catch everything else here as well.
return []
else:
return []
def predict_storage_path(self, content):
if self.storage_path_classifier:
X = self.data_vectorizer.transform([self.preprocess_content(content)])
storage_path_id = self.storage_path_classifier.predict(X)
if storage_path_id != -1:
return storage_path_id
else:
return None
else:
return None