mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-23 10:39:25 -05:00
68 lines
2.4 KiB
Python
68 lines
2.4 KiB
Python
import json
|
|
import logging
|
|
|
|
from documents.ai.client import run_llm_query
|
|
from documents.models import Document
|
|
|
|
logger = logging.getLogger("paperless.ai.llm_classifier")
|
|
|
|
|
|
def get_ai_document_classification(document: Document) -> dict:
|
|
"""
|
|
Returns classification suggestions for a given document using an LLM.
|
|
Output schema matches the API's expected DocumentClassificationSuggestions format.
|
|
"""
|
|
filename = document.filename or ""
|
|
content = document.content or ""
|
|
|
|
# Limit the content to 10k characters
|
|
content = content[:10000]
|
|
|
|
prompt = f"""
|
|
You are a document classification assistant. Based on the content below, return a JSON object suggesting the following classification fields:
|
|
- title: A descriptive title for the document
|
|
- tags: A list of tags that describe the document (e.g. ["medical", "insurance"])
|
|
- correspondent: Who sent or issued this document (e.g. "Kaiser Permanente")
|
|
- document_types: The type or category (e.g. "invoice", "medical record", "statement")
|
|
- storage_paths: Suggested storage folders (e.g. "Insurance/2024")
|
|
- dates: Up to 3 dates in ISO format (YYYY-MM-DD) found in the document, relevant to its content
|
|
|
|
Return only a valid JSON object. Do not add commentary.
|
|
|
|
FILENAME: {filename}
|
|
|
|
CONTENT:
|
|
{content}
|
|
"""
|
|
|
|
try:
|
|
result = run_llm_query(prompt)
|
|
suggestions = parse_llm_classification_response(result)
|
|
return suggestions or {}
|
|
except Exception:
|
|
logger.exception("Error during LLM classification: %s", exc_info=True)
|
|
return {}
|
|
|
|
|
|
def parse_llm_classification_response(text: str) -> dict:
|
|
"""
|
|
Parses LLM output and ensures it conforms to expected schema.
|
|
"""
|
|
try:
|
|
raw = json.loads(text)
|
|
return {
|
|
"title": raw.get("title"),
|
|
"tags": raw.get("tags", []),
|
|
"correspondents": [raw["correspondents"]]
|
|
if isinstance(raw.get("correspondents"), str)
|
|
else raw.get("correspondents", []),
|
|
"document_types": [raw["document_types"]]
|
|
if isinstance(raw.get("document_types"), str)
|
|
else raw.get("document_types", []),
|
|
"storage_paths": raw.get("storage_paths", []),
|
|
"dates": [d for d in raw.get("dates", []) if d],
|
|
}
|
|
except json.JSONDecodeError:
|
|
# fallback: try to extract JSON manually?
|
|
return {}
|