Merge branch 'machine-learning' into dev

This commit is contained in:
Jonas Winkler 2018-09-11 14:36:21 +02:00
commit 46a5bc00d7
7 changed files with 66 additions and 45 deletions

0
models/.keep Normal file
View File

View File

@ -239,9 +239,9 @@ def run_document_classifier_on_selected(modeladmin, request, queryset):
n = queryset.count()
if n:
for obj in queryset:
clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_type=True, replace_tags=True)
clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_document_type=True, replace_tags=True)
modeladmin.log_change(request, obj, str(obj))
modeladmin.message_user(request, "Successfully applied tags, correspondent and type to %(count)d %(items)s." % {
modeladmin.message_user(request, "Successfully applied tags, correspondent and document type to %(count)d %(items)s." % {
"count": n, "items": model_ngettext(modeladmin.opts, n)
}, messages.SUCCESS)

View File

@ -12,6 +12,7 @@ class DocumentsConfig(AppConfig):
from .signals import document_consumption_finished
from .signals.handlers import (
classify_document,
add_inbox_tags,
run_pre_consume_script,
run_post_consume_script,
cleanup_document_deletion,
@ -21,6 +22,7 @@ class DocumentsConfig(AppConfig):
document_consumption_started.connect(run_pre_consume_script)
document_consumption_finished.connect(classify_document)
document_consumption_finished.connect(add_inbox_tags)
document_consumption_finished.connect(set_log_entry)
document_consumption_finished.connect(run_post_consume_script)

View File

@ -2,12 +2,12 @@ import logging
import os
import pickle
from sklearn.neural_network import MLPClassifier
from documents.models import Correspondent, DocumentType, Tag, Document
from paperless import settings
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
@ -29,11 +29,11 @@ class DocumentClassifier(object):
tags_binarizer = None
correspondent_binarizer = None
type_binarizer = None
document_type_binarizer = None
tags_classifier = None
correspondent_classifier = None
type_classifier = None
document_type_classifier = None
@staticmethod
def load_classifier():
@ -48,11 +48,11 @@ class DocumentClassifier(object):
self.data_vectorizer = pickle.load(f)
self.tags_binarizer = pickle.load(f)
self.correspondent_binarizer = pickle.load(f)
self.type_binarizer = pickle.load(f)
self.document_type_binarizer = pickle.load(f)
self.tags_classifier = pickle.load(f)
self.correspondent_classifier = pickle.load(f)
self.type_classifier = pickle.load(f)
self.document_type_classifier = pickle.load(f)
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
def save_classifier(self):
@ -61,33 +61,33 @@ class DocumentClassifier(object):
pickle.dump(self.tags_binarizer, f)
pickle.dump(self.correspondent_binarizer, f)
pickle.dump(self.type_binarizer, f)
pickle.dump(self.document_type_binarizer, f)
pickle.dump(self.tags_classifier, f)
pickle.dump(self.correspondent_classifier, f)
pickle.dump(self.type_classifier, f)
pickle.dump(self.document_type_classifier, f)
def train(self):
data = list()
labels_tags = list()
labels_correspondent = list()
labels_type = list()
labels_document_type = list()
# Step 1: Extract and preprocess training data from the database.
logging.getLogger(__name__).info("Gathering data from database...")
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
data.append(preprocess_content(doc.content))
labels_type.append(doc.document_type.name if doc.document_type is not None and doc.document_type.automatic_classification else "-")
labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None and doc.correspondent.automatic_classification else "-")
tags = [tag.name for tag in doc.tags.filter(automatic_classification=True)]
labels_document_type.append(doc.document_type.id if doc.document_type is not None and doc.document_type.automatic_classification else -1)
labels_correspondent.append(doc.correspondent.id if doc.correspondent is not None and doc.correspondent.automatic_classification else -1)
tags = [tag.id for tag in doc.tags.filter(automatic_classification=True)]
labels_tags.append(tags)
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
logging.getLogger(__name__).info("{} documents, {} tag(s) {}, {} correspondent(s) {}, {} type(s) {}.".format(len(data), len(labels_tags_unique), labels_tags_unique, len(set(labels_correspondent)), set(labels_correspondent), len(set(labels_type)), set(labels_type)))
logging.getLogger(__name__).info("{} documents, {} tag(s), {} correspondent(s), {} document type(s).".format(len(data), len(labels_tags_unique), len(set(labels_correspondent)), len(set(labels_document_type))))
# Step 2: vectorize data
logging.getLogger(__name__).info("Vectorizing data...")
self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1)
self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(3, 5), min_df=0.1)
data_vectorized = self.data_vectorizer.fit_transform(data)
self.tags_binarizer = MultiLabelBinarizer()
@ -96,13 +96,13 @@ class DocumentClassifier(object):
self.correspondent_binarizer = LabelBinarizer()
labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent)
self.type_binarizer = LabelBinarizer()
labels_type_vectorized = self.type_binarizer.fit_transform(labels_type)
self.document_type_binarizer = LabelBinarizer()
labels_document_type_vectorized = self.document_type_binarizer.fit_transform(labels_document_type)
# Step 3: train the classifiers
if len(self.tags_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training tags classifier...")
self.tags_classifier = OneVsRestClassifier(MultinomialNB())
self.tags_classifier = MLPClassifier(verbose=True)
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
self.tags_classifier = None
@ -110,45 +110,58 @@ class DocumentClassifier(object):
if len(self.correspondent_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training correspondent classifier...")
self.correspondent_classifier = OneVsRestClassifier(MultinomialNB())
self.correspondent_classifier = MLPClassifier(verbose=True)
self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized)
else:
self.correspondent_classifier = None
logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.")
if len(self.type_binarizer.classes_) > 0:
if len(self.document_type_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training document type classifier...")
self.type_classifier = OneVsRestClassifier(MultinomialNB())
self.type_classifier.fit(data_vectorized, labels_type_vectorized)
self.document_type_classifier = MLPClassifier(verbose=True)
self.document_type_classifier.fit(data_vectorized, labels_document_type_vectorized)
else:
self.type_classifier = None
self.document_type_classifier = None
logging.getLogger(__name__).info("There are no document types. Not training document type classifier.")
def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False, replace_tags=False):
def classify_document(self, document, classify_correspondent=False, classify_document_type=False, classify_tags=False, replace_tags=False):
X = self.data_vectorizer.transform([preprocess_content(document.content)])
update_fields=()
if classify_correspondent and self.correspondent_classifier is not None:
y_correspondent = self.correspondent_classifier.predict(X)
correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
print("Detected correspondent:", correspondent)
document.correspondent = Correspondent.objects.filter(name=correspondent).first()
update_fields = update_fields + ("correspondent",)
correspondent_id = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
try:
correspondent = Correspondent.objects.get(id=correspondent_id) if correspondent_id != -1 else None
logging.getLogger(__name__).info("Detected correspondent: {}".format(correspondent.name if correspondent else "-"))
document.correspondent = correspondent
update_fields = update_fields + ("correspondent",)
except Correspondent.DoesNotExist:
logging.getLogger(__name__).warning("Detected correspondent with id {} does not exist anymore! Did you delete it?".format(correspondent_id))
if classify_type and self.type_classifier is not None:
y_type = self.type_classifier.predict(X)
type = self.type_binarizer.inverse_transform(y_type)[0]
print("Detected document type:", type)
document.document_type = DocumentType.objects.filter(name=type).first()
update_fields = update_fields + ("document_type",)
if classify_document_type and self.document_type_classifier is not None:
y_type = self.document_type_classifier.predict(X)
type_id = self.document_type_binarizer.inverse_transform(y_type)[0]
try:
document_type = DocumentType.objects.get(id=type_id) if type_id != -1 else None
logging.getLogger(__name__).info("Detected document type: {}".format(document_type.name if document_type else "-"))
document.document_type = document_type
update_fields = update_fields + ("document_type",)
except DocumentType.DoesNotExist:
logging.getLogger(__name__).warning("Detected document type with id {} does not exist anymore! Did you delete it?".format(type_id))
if classify_tags and self.tags_classifier is not None:
y_tags = self.tags_classifier.predict(X)
tags = self.tags_binarizer.inverse_transform(y_tags)[0]
print("Detected tags:", tags)
tags_ids = self.tags_binarizer.inverse_transform(y_tags)[0]
if replace_tags:
document.tags.clear()
document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags])
for tag_id in tags_ids:
try:
tag = Tag.objects.get(id=tag_id)
document.tags.add(tag)
logging.getLogger(__name__).info("Detected tag: {}".format(tag.name))
except Tag.DoesNotExist:
logging.getLogger(__name__).warning("Detected tag with id {} does not exist anymore! Did you delete it?".format(tag_id))
document.save(update_fields=update_fields)

View File

@ -18,7 +18,7 @@ class Command(Renderable, BaseCommand):
with open("dataset_tags.txt", "w") as f:
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
labels = []
for tag in doc.tags.all():
for tag in doc.tags.filter(automatic_classification=True):
labels.append(tag.name)
f.write(",".join(labels))
f.write(";")
@ -27,14 +27,14 @@ class Command(Renderable, BaseCommand):
with open("dataset_types.txt", "w") as f:
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
f.write(doc.document_type.name if doc.document_type is not None else "None")
f.write(doc.document_type.name if doc.document_type is not None and doc.document_type.automatic_classification else "-")
f.write(";")
f.write(preprocess_content(doc.content))
f.write("\n")
with open("dataset_correspondents.txt", "w") as f:
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
f.write(doc.correspondent.name if doc.correspondent is not None else "None")
f.write(doc.correspondent.name if doc.correspondent is not None and doc.correspondent.automatic_classification else "-")
f.write(";")
f.write(preprocess_content(doc.content))
f.write("\n")

View File

@ -35,6 +35,10 @@ class Command(Renderable, BaseCommand):
"-i", "--inbox-only",
action="store_true"
)
parser.add_argument(
"-r", "--replace-tags",
action="store_true"
)
def handle(self, *args, **options):
@ -52,7 +56,6 @@ class Command(Renderable, BaseCommand):
logging.getLogger(__name__).fatal("Cannot classify documents, classifier model file was not found.")
return
for document in documents:
logging.getLogger(__name__).info("Processing document {}".format(document.title))
clf.classify_document(document, classify_type=options['type'], classify_tags=options['tags'], classify_correspondent=options['correspondent'])
clf.classify_document(document, classify_document_type=options['type'], classify_tags=options['tags'], classify_correspondent=options['correspondent'], replace_tags=options['replace_tags'])

View File

@ -9,7 +9,7 @@ from django.contrib.contenttypes.models import ContentType
from django.utils import timezone
from documents.classifier import DocumentClassifier
from ..models import Correspondent, Document, Tag, DocumentType
from ..models import Document, Tag
def logger(message, group):
@ -23,11 +23,14 @@ def classify_document(sender, document=None, logging_group=None, **kwargs):
global classifier
try:
classifier.reload()
classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_type=True)
classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_document_type=True)
except FileNotFoundError:
logging.getLogger(__name__).fatal("Cannot classify document, classifier model file was not found.")
def add_inbox_tags(sender, document=None, logging_group=None, **kwargs):
inbox_tags = Tag.objects.filter(is_inbox_tag=True)
document.tags.add(*inbox_tags)
def run_pre_consume_script(sender, filename, **kwargs):