mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-07-30 18:27:45 -05:00
Merge branch 'machine-learning' into dev
This commit is contained in:
@@ -2,12 +2,12 @@ import logging
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from documents.models import Correspondent, DocumentType, Tag, Document
|
||||
from paperless import settings
|
||||
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.multiclass import OneVsRestClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
|
||||
|
||||
|
||||
@@ -29,11 +29,11 @@ class DocumentClassifier(object):
|
||||
|
||||
tags_binarizer = None
|
||||
correspondent_binarizer = None
|
||||
type_binarizer = None
|
||||
document_type_binarizer = None
|
||||
|
||||
tags_classifier = None
|
||||
correspondent_classifier = None
|
||||
type_classifier = None
|
||||
document_type_classifier = None
|
||||
|
||||
@staticmethod
|
||||
def load_classifier():
|
||||
@@ -48,11 +48,11 @@ class DocumentClassifier(object):
|
||||
self.data_vectorizer = pickle.load(f)
|
||||
self.tags_binarizer = pickle.load(f)
|
||||
self.correspondent_binarizer = pickle.load(f)
|
||||
self.type_binarizer = pickle.load(f)
|
||||
self.document_type_binarizer = pickle.load(f)
|
||||
|
||||
self.tags_classifier = pickle.load(f)
|
||||
self.correspondent_classifier = pickle.load(f)
|
||||
self.type_classifier = pickle.load(f)
|
||||
self.document_type_classifier = pickle.load(f)
|
||||
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
|
||||
|
||||
def save_classifier(self):
|
||||
@@ -61,33 +61,33 @@ class DocumentClassifier(object):
|
||||
|
||||
pickle.dump(self.tags_binarizer, f)
|
||||
pickle.dump(self.correspondent_binarizer, f)
|
||||
pickle.dump(self.type_binarizer, f)
|
||||
pickle.dump(self.document_type_binarizer, f)
|
||||
|
||||
pickle.dump(self.tags_classifier, f)
|
||||
pickle.dump(self.correspondent_classifier, f)
|
||||
pickle.dump(self.type_classifier, f)
|
||||
pickle.dump(self.document_type_classifier, f)
|
||||
|
||||
def train(self):
|
||||
data = list()
|
||||
labels_tags = list()
|
||||
labels_correspondent = list()
|
||||
labels_type = list()
|
||||
labels_document_type = list()
|
||||
|
||||
# Step 1: Extract and preprocess training data from the database.
|
||||
logging.getLogger(__name__).info("Gathering data from database...")
|
||||
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
|
||||
data.append(preprocess_content(doc.content))
|
||||
labels_type.append(doc.document_type.name if doc.document_type is not None and doc.document_type.automatic_classification else "-")
|
||||
labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None and doc.correspondent.automatic_classification else "-")
|
||||
tags = [tag.name for tag in doc.tags.filter(automatic_classification=True)]
|
||||
labels_document_type.append(doc.document_type.id if doc.document_type is not None and doc.document_type.automatic_classification else -1)
|
||||
labels_correspondent.append(doc.correspondent.id if doc.correspondent is not None and doc.correspondent.automatic_classification else -1)
|
||||
tags = [tag.id for tag in doc.tags.filter(automatic_classification=True)]
|
||||
labels_tags.append(tags)
|
||||
|
||||
labels_tags_unique = set([tag for tags in labels_tags for tag in tags])
|
||||
logging.getLogger(__name__).info("{} documents, {} tag(s) {}, {} correspondent(s) {}, {} type(s) {}.".format(len(data), len(labels_tags_unique), labels_tags_unique, len(set(labels_correspondent)), set(labels_correspondent), len(set(labels_type)), set(labels_type)))
|
||||
logging.getLogger(__name__).info("{} documents, {} tag(s), {} correspondent(s), {} document type(s).".format(len(data), len(labels_tags_unique), len(set(labels_correspondent)), len(set(labels_document_type))))
|
||||
|
||||
# Step 2: vectorize data
|
||||
logging.getLogger(__name__).info("Vectorizing data...")
|
||||
self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1)
|
||||
self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(3, 5), min_df=0.1)
|
||||
data_vectorized = self.data_vectorizer.fit_transform(data)
|
||||
|
||||
self.tags_binarizer = MultiLabelBinarizer()
|
||||
@@ -96,13 +96,13 @@ class DocumentClassifier(object):
|
||||
self.correspondent_binarizer = LabelBinarizer()
|
||||
labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent)
|
||||
|
||||
self.type_binarizer = LabelBinarizer()
|
||||
labels_type_vectorized = self.type_binarizer.fit_transform(labels_type)
|
||||
self.document_type_binarizer = LabelBinarizer()
|
||||
labels_document_type_vectorized = self.document_type_binarizer.fit_transform(labels_document_type)
|
||||
|
||||
# Step 3: train the classifiers
|
||||
if len(self.tags_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info("Training tags classifier...")
|
||||
self.tags_classifier = OneVsRestClassifier(MultinomialNB())
|
||||
self.tags_classifier = MLPClassifier(verbose=True)
|
||||
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
||||
else:
|
||||
self.tags_classifier = None
|
||||
@@ -110,45 +110,58 @@ class DocumentClassifier(object):
|
||||
|
||||
if len(self.correspondent_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info("Training correspondent classifier...")
|
||||
self.correspondent_classifier = OneVsRestClassifier(MultinomialNB())
|
||||
self.correspondent_classifier = MLPClassifier(verbose=True)
|
||||
self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized)
|
||||
else:
|
||||
self.correspondent_classifier = None
|
||||
logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.")
|
||||
|
||||
if len(self.type_binarizer.classes_) > 0:
|
||||
if len(self.document_type_binarizer.classes_) > 0:
|
||||
logging.getLogger(__name__).info("Training document type classifier...")
|
||||
self.type_classifier = OneVsRestClassifier(MultinomialNB())
|
||||
self.type_classifier.fit(data_vectorized, labels_type_vectorized)
|
||||
self.document_type_classifier = MLPClassifier(verbose=True)
|
||||
self.document_type_classifier.fit(data_vectorized, labels_document_type_vectorized)
|
||||
else:
|
||||
self.type_classifier = None
|
||||
self.document_type_classifier = None
|
||||
logging.getLogger(__name__).info("There are no document types. Not training document type classifier.")
|
||||
|
||||
def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False, replace_tags=False):
|
||||
def classify_document(self, document, classify_correspondent=False, classify_document_type=False, classify_tags=False, replace_tags=False):
|
||||
X = self.data_vectorizer.transform([preprocess_content(document.content)])
|
||||
|
||||
update_fields=()
|
||||
|
||||
if classify_correspondent and self.correspondent_classifier is not None:
|
||||
y_correspondent = self.correspondent_classifier.predict(X)
|
||||
correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
|
||||
print("Detected correspondent:", correspondent)
|
||||
document.correspondent = Correspondent.objects.filter(name=correspondent).first()
|
||||
update_fields = update_fields + ("correspondent",)
|
||||
correspondent_id = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
|
||||
try:
|
||||
correspondent = Correspondent.objects.get(id=correspondent_id) if correspondent_id != -1 else None
|
||||
logging.getLogger(__name__).info("Detected correspondent: {}".format(correspondent.name if correspondent else "-"))
|
||||
document.correspondent = correspondent
|
||||
update_fields = update_fields + ("correspondent",)
|
||||
except Correspondent.DoesNotExist:
|
||||
logging.getLogger(__name__).warning("Detected correspondent with id {} does not exist anymore! Did you delete it?".format(correspondent_id))
|
||||
|
||||
if classify_type and self.type_classifier is not None:
|
||||
y_type = self.type_classifier.predict(X)
|
||||
type = self.type_binarizer.inverse_transform(y_type)[0]
|
||||
print("Detected document type:", type)
|
||||
document.document_type = DocumentType.objects.filter(name=type).first()
|
||||
update_fields = update_fields + ("document_type",)
|
||||
if classify_document_type and self.document_type_classifier is not None:
|
||||
y_type = self.document_type_classifier.predict(X)
|
||||
type_id = self.document_type_binarizer.inverse_transform(y_type)[0]
|
||||
try:
|
||||
document_type = DocumentType.objects.get(id=type_id) if type_id != -1 else None
|
||||
logging.getLogger(__name__).info("Detected document type: {}".format(document_type.name if document_type else "-"))
|
||||
document.document_type = document_type
|
||||
update_fields = update_fields + ("document_type",)
|
||||
except DocumentType.DoesNotExist:
|
||||
logging.getLogger(__name__).warning("Detected document type with id {} does not exist anymore! Did you delete it?".format(type_id))
|
||||
|
||||
if classify_tags and self.tags_classifier is not None:
|
||||
y_tags = self.tags_classifier.predict(X)
|
||||
tags = self.tags_binarizer.inverse_transform(y_tags)[0]
|
||||
print("Detected tags:", tags)
|
||||
tags_ids = self.tags_binarizer.inverse_transform(y_tags)[0]
|
||||
if replace_tags:
|
||||
document.tags.clear()
|
||||
document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags])
|
||||
for tag_id in tags_ids:
|
||||
try:
|
||||
tag = Tag.objects.get(id=tag_id)
|
||||
document.tags.add(tag)
|
||||
logging.getLogger(__name__).info("Detected tag: {}".format(tag.name))
|
||||
except Tag.DoesNotExist:
|
||||
logging.getLogger(__name__).warning("Detected tag with id {} does not exist anymore! Did you delete it?".format(tag_id))
|
||||
|
||||
document.save(update_fields=update_fields)
|
||||
|
Reference in New Issue
Block a user