removed matching model fields, automatic classifier reloading, added autmatic_classification field to matching model

This commit is contained in:
Jonas Winkler
2018-09-04 18:40:26 +02:00
parent 30134034e2
commit 70bd05450a
8 changed files with 126 additions and 143 deletions

View File

@@ -15,48 +15,15 @@ from django.db import models
from django.template.defaultfilters import slugify
from django.utils import timezone
from reminders.models import Reminder
from .managers import LogManager
class MatchingModel(models.Model):
MATCH_ANY = 1
MATCH_ALL = 2
MATCH_LITERAL = 3
MATCH_REGEX = 4
MATCH_FUZZY = 5
MATCHING_ALGORITHMS = (
(MATCH_ANY, "Any"),
(MATCH_ALL, "All"),
(MATCH_LITERAL, "Literal"),
(MATCH_REGEX, "Regular Expression"),
(MATCH_FUZZY, "Fuzzy Match"),
)
name = models.CharField(max_length=128, unique=True)
slug = models.SlugField(blank=True)
match = models.CharField(max_length=256, blank=True)
matching_algorithm = models.PositiveIntegerField(
choices=MATCHING_ALGORITHMS,
default=MATCH_ANY,
help_text=(
"Which algorithm you want to use when matching text to the OCR'd "
"PDF. Here, \"any\" looks for any occurrence of any word "
"provided in the PDF, while \"all\" requires that every word "
"provided appear in the PDF, albeit not in the order provided. A "
"\"literal\" match means that the text you enter must appear in "
"the PDF exactly as you've entered it, and \"regular expression\" "
"uses a regex to match the PDF. (If you don't know what a regex "
"is, you probably don't want this option.) Finally, a \"fuzzy "
"match\" looks for words or phrases that are mostly—but not "
"exactly—the same, which can be useful for matching against "
"documents containg imperfections that foil accurate OCR."
)
)
is_insensitive = models.BooleanField(default=True)
automatic_classification = models.BooleanField(default=False, help_text='Automatically assign to newly added documents based on current usage in your document collection.')
class Meta:
abstract = True
@@ -64,87 +31,8 @@ class MatchingModel(models.Model):
def __str__(self):
return self.name
@property
def conditions(self):
return "{}: \"{}\" ({})".format(
self.name, self.match, self.get_matching_algorithm_display())
@classmethod
def match_all(cls, text, tags=None):
if tags is None:
tags = cls.objects.all()
text = text.lower()
for tag in tags:
if tag.matches(text):
yield tag
def matches(self, text):
search_kwargs = {}
# Check that match is not empty
if self.match.strip() == "":
return False
if self.is_insensitive:
search_kwargs = {"flags": re.IGNORECASE}
if self.matching_algorithm == self.MATCH_ALL:
for word in self._split_match():
search_result = re.search(
r"\b{}\b".format(word), text, **search_kwargs)
if not search_result:
return False
return True
if self.matching_algorithm == self.MATCH_ANY:
for word in self._split_match():
if re.search(r"\b{}\b".format(word), text, **search_kwargs):
return True
return False
if self.matching_algorithm == self.MATCH_LITERAL:
return bool(re.search(
r"\b{}\b".format(self.match), text, **search_kwargs))
if self.matching_algorithm == self.MATCH_REGEX:
return bool(re.search(
re.compile(self.match, **search_kwargs), text))
if self.matching_algorithm == self.MATCH_FUZZY:
match = re.sub(r'[^\w\s]', '', self.match)
text = re.sub(r'[^\w\s]', '', text)
if self.is_insensitive:
match = match.lower()
text = text.lower()
return True if fuzz.partial_ratio(match, text) >= 90 else False
raise NotImplementedError("Unsupported matching algorithm")
def _split_match(self):
"""
Splits the match to individual keywords, getting rid of unnecessary
spaces and grouping quoted words together.
Example:
' some random words "with quotes " and spaces'
==>
["some", "random", "words", "with\s+quotes", "and", "spaces"]
"""
findterms = re.compile(r'"([^"]+)"|(\S+)').findall
normspace = re.compile(r"\s+").sub
return [
normspace(" ", (t[0] or t[1]).strip()).replace(" ", r"\s+")
for t in findterms(self.match)
]
def save(self, *args, **kwargs):
self.match = self.match.lower()
if not self.slug:
self.slug = slugify(self.name)