mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-08-10 00:18:57 +00:00
Support dynamic determining of embedding dimensions
This commit is contained in:
@@ -570,6 +570,8 @@ def llmindex_index(
|
||||
|
||||
task.date_done = timezone.now()
|
||||
task.save(update_fields=["status", "result", "date_done"])
|
||||
else:
|
||||
logger.info("LLM index is disabled, skipping update.")
|
||||
|
||||
|
||||
@shared_task
|
||||
|
@@ -1,3 +1,10 @@
|
||||
import json
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathlib import Path
|
||||
|
||||
from django.conf import settings
|
||||
from llama_index.core.base.embeddings.base import BaseEmbedding
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
@@ -7,11 +14,6 @@ from documents.models import Note
|
||||
from paperless.config import AIConfig
|
||||
from paperless.models import LLMEmbeddingBackend
|
||||
|
||||
EMBEDDING_DIMENSIONS = {
|
||||
"text-embedding-3-small": 1536,
|
||||
"sentence-transformers/all-MiniLM-L6-v2": 384,
|
||||
}
|
||||
|
||||
|
||||
def get_embedding_model() -> BaseEmbedding:
|
||||
config = AIConfig()
|
||||
@@ -34,15 +36,36 @@ def get_embedding_model() -> BaseEmbedding:
|
||||
|
||||
|
||||
def get_embedding_dim() -> int:
|
||||
"""
|
||||
Loads embedding dimension from meta.json if available, otherwise infers it
|
||||
from a dummy embedding and stores it for future use.
|
||||
"""
|
||||
config = AIConfig()
|
||||
model = config.llm_embedding_model or (
|
||||
"text-embedding-3-small"
|
||||
if config.llm_embedding_backend == "openai"
|
||||
else "sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
if model not in EMBEDDING_DIMENSIONS:
|
||||
raise ValueError(f"Unknown embedding model: {model}")
|
||||
return EMBEDDING_DIMENSIONS[model]
|
||||
|
||||
meta_path: Path = settings.LLM_INDEX_DIR / "meta.json"
|
||||
if meta_path.exists():
|
||||
with meta_path.open() as f:
|
||||
meta = json.load(f)
|
||||
if meta.get("embedding_model") != model:
|
||||
raise RuntimeError(
|
||||
f"Embedding model changed from {meta.get('embedding_model')} to {model}. "
|
||||
"You must rebuild the index.",
|
||||
)
|
||||
return meta["dim"]
|
||||
|
||||
embedding_model = get_embedding_model()
|
||||
test_embed = embedding_model.get_text_embedding("test")
|
||||
dim = len(test_embed)
|
||||
|
||||
with meta_path.open("w") as f:
|
||||
json.dump({"embedding_model": model, "dim": dim}, f)
|
||||
|
||||
return dim
|
||||
|
||||
|
||||
def build_llm_index_text(doc: Document) -> str:
|
||||
|
@@ -138,6 +138,8 @@ def update_llm_index(*, progress_bar_disable=False, rebuild=False) -> str:
|
||||
return msg
|
||||
|
||||
if rebuild or not vector_store_file_exists():
|
||||
# remove meta.json to force re-detection of embedding dim
|
||||
(settings.LLM_INDEX_DIR / "meta.json").unlink(missing_ok=True)
|
||||
# Rebuild index from scratch
|
||||
logger.info("Rebuilding LLM index.")
|
||||
embed_model = get_embedding_model()
|
||||
|
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
from unittest.mock import MagicMock
|
||||
from unittest.mock import patch
|
||||
|
||||
@@ -29,9 +30,16 @@ def real_document(db):
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embed_model():
|
||||
with patch("paperless_ai.indexing.get_embedding_model") as mock:
|
||||
mock.return_value = FakeEmbedding()
|
||||
yield mock
|
||||
fake = FakeEmbedding()
|
||||
with (
|
||||
patch("paperless_ai.indexing.get_embedding_model") as mock_index,
|
||||
patch(
|
||||
"paperless_ai.embedding.get_embedding_model",
|
||||
) as mock_embedding,
|
||||
):
|
||||
mock_index.return_value = fake
|
||||
mock_embedding.return_value = fake
|
||||
yield mock_index
|
||||
|
||||
|
||||
class FakeEmbedding(BaseEmbedding):
|
||||
@@ -72,6 +80,36 @@ def test_update_llm_index(
|
||||
assert any(temp_llm_index_dir.glob("*.json"))
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_update_llm_index_removes_meta(
|
||||
temp_llm_index_dir,
|
||||
real_document,
|
||||
mock_embed_model,
|
||||
):
|
||||
# Pre-create a meta.json with incorrect data
|
||||
(temp_llm_index_dir / "meta.json").write_text(
|
||||
json.dumps({"embedding_model": "old", "dim": 1}),
|
||||
)
|
||||
|
||||
with patch("documents.models.Document.objects.all") as mock_all:
|
||||
mock_queryset = MagicMock()
|
||||
mock_queryset.exists.return_value = True
|
||||
mock_queryset.__iter__.return_value = iter([real_document])
|
||||
mock_all.return_value = mock_queryset
|
||||
indexing.update_llm_index(rebuild=True)
|
||||
|
||||
meta = json.loads((temp_llm_index_dir / "meta.json").read_text())
|
||||
from paperless.config import AIConfig
|
||||
|
||||
config = AIConfig()
|
||||
expected_model = config.llm_embedding_model or (
|
||||
"text-embedding-3-small"
|
||||
if config.llm_embedding_backend == "openai"
|
||||
else "sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
assert meta == {"embedding_model": expected_model, "dim": 384}
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_update_llm_index_partial_update(
|
||||
temp_llm_index_dir,
|
||||
@@ -137,6 +175,7 @@ def test_get_or_create_storage_context_raises_exception(
|
||||
def test_load_or_build_index_builds_when_nodes_given(
|
||||
temp_llm_index_dir,
|
||||
real_document,
|
||||
mock_embed_model,
|
||||
):
|
||||
with (
|
||||
patch(
|
||||
|
@@ -1,8 +1,10 @@
|
||||
import json
|
||||
from unittest.mock import MagicMock
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
import paperless_ai.embedding as embedding
|
||||
from documents.models import Document
|
||||
from paperless.models import LLMEmbeddingBackend
|
||||
from paperless_ai.embedding import build_llm_index_text
|
||||
@@ -16,6 +18,14 @@ def mock_ai_config():
|
||||
yield MockAIConfig
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def temp_llm_index_dir(tmp_path):
|
||||
original_dir = embedding.settings.LLM_INDEX_DIR
|
||||
embedding.settings.LLM_INDEX_DIR = tmp_path
|
||||
yield tmp_path
|
||||
embedding.settings.LLM_INDEX_DIR = original_dir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_document():
|
||||
doc = MagicMock(spec=Document)
|
||||
@@ -91,25 +101,51 @@ def test_get_embedding_model_invalid_backend(mock_ai_config):
|
||||
get_embedding_model()
|
||||
|
||||
|
||||
def test_get_embedding_dim_openai(mock_ai_config):
|
||||
def test_get_embedding_dim_infers_and_saves(temp_llm_index_dir, mock_ai_config):
|
||||
mock_ai_config.return_value.llm_embedding_backend = "openai"
|
||||
mock_ai_config.return_value.llm_embedding_model = None
|
||||
|
||||
assert get_embedding_dim() == 1536
|
||||
class DummyEmbedding:
|
||||
def get_text_embedding(self, text):
|
||||
return [0.0] * 7
|
||||
|
||||
with patch(
|
||||
"paperless_ai.embedding.get_embedding_model",
|
||||
return_value=DummyEmbedding(),
|
||||
) as mock_get:
|
||||
dim = get_embedding_dim()
|
||||
mock_get.assert_called_once()
|
||||
|
||||
assert dim == 7
|
||||
meta = json.loads((temp_llm_index_dir / "meta.json").read_text())
|
||||
assert meta == {"embedding_model": "text-embedding-3-small", "dim": 7}
|
||||
|
||||
|
||||
def test_get_embedding_dim_huggingface(mock_ai_config):
|
||||
mock_ai_config.return_value.llm_embedding_backend = "huggingface"
|
||||
def test_get_embedding_dim_reads_existing_meta(temp_llm_index_dir, mock_ai_config):
|
||||
mock_ai_config.return_value.llm_embedding_backend = "openai"
|
||||
mock_ai_config.return_value.llm_embedding_model = None
|
||||
|
||||
assert get_embedding_dim() == 384
|
||||
(temp_llm_index_dir / "meta.json").write_text(
|
||||
json.dumps({"embedding_model": "text-embedding-3-small", "dim": 11}),
|
||||
)
|
||||
|
||||
with patch("paperless_ai.embedding.get_embedding_model") as mock_get:
|
||||
assert get_embedding_dim() == 11
|
||||
mock_get.assert_not_called()
|
||||
|
||||
|
||||
def test_get_embedding_dim_unknown_model(mock_ai_config):
|
||||
def test_get_embedding_dim_raises_on_model_change(temp_llm_index_dir, mock_ai_config):
|
||||
mock_ai_config.return_value.llm_embedding_backend = "openai"
|
||||
mock_ai_config.return_value.llm_embedding_model = "unknown-model"
|
||||
mock_ai_config.return_value.llm_embedding_model = None
|
||||
|
||||
with pytest.raises(ValueError, match="Unknown embedding model: unknown-model"):
|
||||
(temp_llm_index_dir / "meta.json").write_text(
|
||||
json.dumps({"embedding_model": "old", "dim": 11}),
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
RuntimeError,
|
||||
match="Embedding model changed from old to text-embedding-3-small",
|
||||
):
|
||||
get_embedding_dim()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user