mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-04-02 13:45:10 -05:00
Fixed a few things
This commit is contained in:
parent
70bd05450a
commit
82bc0e3368
@ -4,6 +4,7 @@ from django.contrib.admin.utils import model_ngettext
|
|||||||
from django.core.exceptions import PermissionDenied
|
from django.core.exceptions import PermissionDenied
|
||||||
from django.template.response import TemplateResponse
|
from django.template.response import TemplateResponse
|
||||||
|
|
||||||
|
from documents.classifier import DocumentClassifier
|
||||||
from documents.models import Tag, Correspondent, DocumentType
|
from documents.models import Tag, Correspondent, DocumentType
|
||||||
|
|
||||||
|
|
||||||
@ -223,3 +224,28 @@ def remove_document_type_from_selected(modeladmin, request, queryset):
|
|||||||
|
|
||||||
|
|
||||||
remove_document_type_from_selected.short_description = "Remove document type from selected documents"
|
remove_document_type_from_selected.short_description = "Remove document type from selected documents"
|
||||||
|
|
||||||
|
|
||||||
|
def run_document_classifier_on_selected(modeladmin, request, queryset):
|
||||||
|
if not modeladmin.has_change_permission(request):
|
||||||
|
raise PermissionDenied
|
||||||
|
|
||||||
|
try:
|
||||||
|
clf = DocumentClassifier.load_classifier()
|
||||||
|
except FileNotFoundError:
|
||||||
|
modeladmin.message_user(request, "Classifier model file not found.", messages.ERROR)
|
||||||
|
return None
|
||||||
|
|
||||||
|
n = queryset.count()
|
||||||
|
if n:
|
||||||
|
for obj in queryset:
|
||||||
|
clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_type=True, replace_tags=True)
|
||||||
|
modeladmin.log_change(request, obj, str(obj))
|
||||||
|
modeladmin.message_user(request, "Successfully applied tags, correspondent and type to %(count)d %(items)s." % {
|
||||||
|
"count": n, "items": model_ngettext(modeladmin.opts, n)
|
||||||
|
}, messages.SUCCESS)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
run_document_classifier_on_selected.short_description = "Run document classifier on selected"
|
||||||
|
@ -13,7 +13,8 @@ from django.utils.safestring import mark_safe
|
|||||||
from django.db import models
|
from django.db import models
|
||||||
|
|
||||||
from documents.actions import add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, \
|
from documents.actions import add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, \
|
||||||
remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected
|
remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected, \
|
||||||
|
run_document_classifier_on_selected
|
||||||
from .models import Correspondent, Tag, Document, Log, DocumentType
|
from .models import Correspondent, Tag, Document, Log, DocumentType
|
||||||
|
|
||||||
|
|
||||||
@ -165,7 +166,7 @@ class DocumentAdmin(CommonAdmin):
|
|||||||
|
|
||||||
ordering = ["-created", "correspondent"]
|
ordering = ["-created", "correspondent"]
|
||||||
|
|
||||||
actions = [add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected]
|
actions = [add_tag_to_selected, remove_tag_from_selected, set_correspondent_on_selected, remove_correspondent_from_selected, set_document_type_on_selected, remove_document_type_from_selected, run_document_classifier_on_selected]
|
||||||
|
|
||||||
date_hierarchy = 'created'
|
date_hierarchy = 'created'
|
||||||
|
|
||||||
|
@ -1,9 +1,15 @@
|
|||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
|
|
||||||
from documents.models import Correspondent, DocumentType, Tag
|
from documents.models import Correspondent, DocumentType, Tag, Document
|
||||||
from paperless import settings
|
from paperless import settings
|
||||||
|
|
||||||
|
from sklearn.feature_extraction.text import CountVectorizer
|
||||||
|
from sklearn.multiclass import OneVsRestClassifier
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
|
||||||
|
|
||||||
|
|
||||||
def preprocess_content(content):
|
def preprocess_content(content):
|
||||||
content = content.lower()
|
content = content.lower()
|
||||||
@ -61,29 +67,85 @@ class DocumentClassifier(object):
|
|||||||
pickle.dump(self.correspondent_classifier, f)
|
pickle.dump(self.correspondent_classifier, f)
|
||||||
pickle.dump(self.type_classifier, f)
|
pickle.dump(self.type_classifier, f)
|
||||||
|
|
||||||
def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False):
|
def train(self):
|
||||||
|
data = list()
|
||||||
|
labels_tags = list()
|
||||||
|
labels_correspondent = list()
|
||||||
|
labels_type = list()
|
||||||
|
|
||||||
|
# Step 1: Extract and preprocess training data from the database.
|
||||||
|
logging.getLogger(__name__).info("Gathering data from database...")
|
||||||
|
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
|
||||||
|
data.append(preprocess_content(doc.content))
|
||||||
|
labels_type.append(doc.document_type.name if doc.document_type is not None else "-")
|
||||||
|
labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-")
|
||||||
|
tags = [tag.name for tag in doc.tags.all()]
|
||||||
|
labels_tags.append(tags)
|
||||||
|
|
||||||
|
# Step 2: vectorize data
|
||||||
|
logging.getLogger(__name__).info("Vectorizing data...")
|
||||||
|
self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1)
|
||||||
|
data_vectorized = self.data_vectorizer.fit_transform(data)
|
||||||
|
|
||||||
|
self.tags_binarizer = MultiLabelBinarizer()
|
||||||
|
labels_tags_vectorized = self.tags_binarizer.fit_transform(labels_tags)
|
||||||
|
|
||||||
|
self.correspondent_binarizer = LabelBinarizer()
|
||||||
|
labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent)
|
||||||
|
|
||||||
|
self.type_binarizer = LabelBinarizer()
|
||||||
|
labels_type_vectorized = self.type_binarizer.fit_transform(labels_type)
|
||||||
|
|
||||||
|
# Step 3: train the classifiers
|
||||||
|
if len(self.tags_binarizer.classes_) > 0:
|
||||||
|
logging.getLogger(__name__).info("Training tags classifier...")
|
||||||
|
self.tags_classifier = OneVsRestClassifier(MultinomialNB())
|
||||||
|
self.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
||||||
|
else:
|
||||||
|
self.tags_classifier = None
|
||||||
|
logging.getLogger(__name__).info("There are no tags. Not training tags classifier.")
|
||||||
|
|
||||||
|
if len(self.correspondent_binarizer.classes_) > 0:
|
||||||
|
logging.getLogger(__name__).info("Training correspondent classifier...")
|
||||||
|
self.correspondent_classifier = OneVsRestClassifier(MultinomialNB())
|
||||||
|
self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized)
|
||||||
|
else:
|
||||||
|
self.correspondent_classifier = None
|
||||||
|
logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.")
|
||||||
|
|
||||||
|
if len(self.type_binarizer.classes_) > 0:
|
||||||
|
logging.getLogger(__name__).info("Training document type classifier...")
|
||||||
|
self.type_classifier = OneVsRestClassifier(MultinomialNB())
|
||||||
|
self.type_classifier.fit(data_vectorized, labels_type_vectorized)
|
||||||
|
else:
|
||||||
|
self.type_classifier = None
|
||||||
|
logging.getLogger(__name__).info("There are no document types. Not training document type classifier.")
|
||||||
|
|
||||||
|
def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False, replace_tags=False):
|
||||||
X = self.data_vectorizer.transform([preprocess_content(document.content)])
|
X = self.data_vectorizer.transform([preprocess_content(document.content)])
|
||||||
|
|
||||||
update_fields=()
|
update_fields=()
|
||||||
|
|
||||||
if classify_correspondent:
|
if classify_correspondent and self.correspondent_classifier is not None:
|
||||||
y_correspondent = self.correspondent_classifier.predict(X)
|
y_correspondent = self.correspondent_classifier.predict(X)
|
||||||
correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
|
correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
|
||||||
print("Detected correspondent:", correspondent)
|
print("Detected correspondent:", correspondent)
|
||||||
document.correspondent = Correspondent.objects.filter(name=correspondent).first()
|
document.correspondent = Correspondent.objects.filter(name=correspondent).first()
|
||||||
update_fields = update_fields + ("correspondent",)
|
update_fields = update_fields + ("correspondent",)
|
||||||
|
|
||||||
if classify_type:
|
if classify_type and self.type_classifier is not None:
|
||||||
y_type = self.type_classifier.predict(X)
|
y_type = self.type_classifier.predict(X)
|
||||||
type = self.type_binarizer.inverse_transform(y_type)[0]
|
type = self.type_binarizer.inverse_transform(y_type)[0]
|
||||||
print("Detected document type:", type)
|
print("Detected document type:", type)
|
||||||
document.document_type = DocumentType.objects.filter(name=type).first()
|
document.document_type = DocumentType.objects.filter(name=type).first()
|
||||||
update_fields = update_fields + ("document_type",)
|
update_fields = update_fields + ("document_type",)
|
||||||
|
|
||||||
if classify_tags:
|
if classify_tags and self.tags_classifier is not None:
|
||||||
y_tags = self.tags_classifier.predict(X)
|
y_tags = self.tags_classifier.predict(X)
|
||||||
tags = self.tags_binarizer.inverse_transform(y_tags)[0]
|
tags = self.tags_binarizer.inverse_transform(y_tags)[0]
|
||||||
print("Detected tags:", tags)
|
print("Detected tags:", tags)
|
||||||
|
if replace_tags:
|
||||||
|
document.tags.clear()
|
||||||
document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags])
|
document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags])
|
||||||
|
|
||||||
document.save(update_fields=update_fields)
|
document.save(update_fields=update_fields)
|
||||||
|
@ -3,13 +3,7 @@ import os.path
|
|||||||
import pickle
|
import pickle
|
||||||
|
|
||||||
from django.core.management.base import BaseCommand
|
from django.core.management.base import BaseCommand
|
||||||
from sklearn.feature_extraction.text import CountVectorizer
|
from documents.classifier import DocumentClassifier
|
||||||
from sklearn.multiclass import OneVsRestClassifier
|
|
||||||
from sklearn.naive_bayes import MultinomialNB
|
|
||||||
from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder
|
|
||||||
|
|
||||||
from documents.classifier import preprocess_content, DocumentClassifier
|
|
||||||
from documents.models import Document
|
|
||||||
from paperless import settings
|
from paperless import settings
|
||||||
from ...mixins import Renderable
|
from ...mixins import Renderable
|
||||||
|
|
||||||
@ -26,64 +20,9 @@ class Command(Renderable, BaseCommand):
|
|||||||
def handle(self, *args, **options):
|
def handle(self, *args, **options):
|
||||||
clf = DocumentClassifier()
|
clf = DocumentClassifier()
|
||||||
|
|
||||||
data = list()
|
clf.train()
|
||||||
labels_tags = list()
|
|
||||||
labels_correspondent = list()
|
|
||||||
labels_type = list()
|
|
||||||
|
|
||||||
# Step 1: Extract and preprocess training data from the database.
|
|
||||||
logging.getLogger(__name__).info("Gathering data from database...")
|
|
||||||
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
|
|
||||||
data.append(preprocess_content(doc.content))
|
|
||||||
labels_type.append(doc.document_type.name if doc.document_type is not None else "-")
|
|
||||||
labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-")
|
|
||||||
tags = [tag.name for tag in doc.tags.all()]
|
|
||||||
labels_tags.append(tags)
|
|
||||||
|
|
||||||
# Step 2: vectorize data
|
|
||||||
logging.getLogger(__name__).info("Vectorizing data...")
|
|
||||||
clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1)
|
|
||||||
data_vectorized = clf.data_vectorizer.fit_transform(data)
|
|
||||||
|
|
||||||
print(clf.data_vectorizer.vocabulary_)
|
|
||||||
|
|
||||||
logging.getLogger(__name__).info("Shape of vectorized data: {}".format(data_vectorized.shape))
|
|
||||||
|
|
||||||
|
|
||||||
clf.tags_binarizer = MultiLabelBinarizer()
|
|
||||||
labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags)
|
|
||||||
|
|
||||||
clf.correspondent_binarizer = LabelEncoder()
|
|
||||||
labels_correspondent_vectorized = clf.correspondent_binarizer.fit_transform(labels_correspondent)
|
|
||||||
|
|
||||||
clf.type_binarizer = LabelEncoder()
|
|
||||||
labels_type_vectorized = clf.type_binarizer.fit_transform(labels_type)
|
|
||||||
|
|
||||||
# Step 3: train the classifiers
|
|
||||||
if len(clf.tags_binarizer.classes_) > 0:
|
|
||||||
logging.getLogger(__name__).info("Training tags classifier")
|
|
||||||
clf.tags_classifier = OneVsRestClassifier(MultinomialNB())
|
|
||||||
clf.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
|
|
||||||
else:
|
|
||||||
clf.tags_classifier = None
|
|
||||||
logging.getLogger(__name__).info("There are no tags. Not training tags classifier.")
|
|
||||||
|
|
||||||
if len(clf.correspondent_binarizer.classes_) > 0:
|
|
||||||
logging.getLogger(__name__).info("Training correspondent classifier")
|
|
||||||
clf.correspondent_classifier = MultinomialNB()
|
|
||||||
clf.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized)
|
|
||||||
else:
|
|
||||||
clf.correspondent_classifier = None
|
|
||||||
logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.")
|
|
||||||
|
|
||||||
if len(clf.type_binarizer.classes_) > 0:
|
|
||||||
logging.getLogger(__name__).info("Training document type classifier")
|
|
||||||
clf.type_classifier = MultinomialNB()
|
|
||||||
clf.type_classifier.fit(data_vectorized, labels_type_vectorized)
|
|
||||||
else:
|
|
||||||
clf.type_classifier = None
|
|
||||||
logging.getLogger(__name__).info("There are no document types. Not training document type classifier.")
|
|
||||||
|
|
||||||
logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...")
|
logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...")
|
||||||
|
|
||||||
clf.save_classifier()
|
clf.save_classifier()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user