mirror of
				https://github.com/paperless-ngx/paperless-ngx.git
				synced 2025-10-30 03:56:23 -05:00 
			
		
		
		
	Implemented the classifier model, including automatic tagging of new documents
This commit is contained in:
		
							
								
								
									
										3
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -83,3 +83,6 @@ scripts/nuke | ||||
|  | ||||
| # Static files collected by the collectstatic command | ||||
| static/ | ||||
|  | ||||
| # Classification Models | ||||
| models/ | ||||
|   | ||||
| @@ -106,14 +106,6 @@ class CorrespondentAdmin(CommonAdmin): | ||||
|     list_filter = ("matching_algorithm",) | ||||
|     list_editable = ("match", "matching_algorithm") | ||||
|  | ||||
|     def save_model(self, request, obj, form, change): | ||||
|         super().save_model(request, obj, form, change) | ||||
|  | ||||
|         for document in Document.objects.filter(correspondent__isnull=True).exclude(tags__is_archived_tag=True): | ||||
|             if obj.matches(document.content): | ||||
|                 document.correspondent = obj | ||||
|                 document.save(update_fields=("correspondent",)) | ||||
|  | ||||
|     def get_queryset(self, request): | ||||
|         qs = super(CorrespondentAdmin, self).get_queryset(request) | ||||
|         qs = qs.annotate(document_count=models.Count("documents"), last_correspondence=models.Max("documents__created")) | ||||
| @@ -135,13 +127,6 @@ class TagAdmin(CommonAdmin): | ||||
|     list_filter = ("colour", "matching_algorithm") | ||||
|     list_editable = ("colour", "match", "matching_algorithm") | ||||
|  | ||||
|     def save_model(self, request, obj, form, change): | ||||
|         super().save_model(request, obj, form, change) | ||||
|  | ||||
|         for document in Document.objects.all().exclude(tags__is_archived_tag=True): | ||||
|             if obj.matches(document.content): | ||||
|                 document.tags.add(obj) | ||||
|  | ||||
|     def get_queryset(self, request): | ||||
|         qs = super(TagAdmin, self).get_queryset(request) | ||||
|         qs = qs.annotate(document_count=models.Count("documents")) | ||||
| @@ -158,14 +143,6 @@ class DocumentTypeAdmin(CommonAdmin): | ||||
|     list_filter = ("matching_algorithm",) | ||||
|     list_editable = ("match", "matching_algorithm") | ||||
|  | ||||
|     def save_model(self, request, obj, form, change): | ||||
|         super().save_model(request, obj, form, change) | ||||
|  | ||||
|         for document in Document.objects.filter(document_type__isnull=True).exclude(tags__is_archived_tag=True): | ||||
|             if obj.matches(document.content): | ||||
|                 document.document_type = obj | ||||
|                 document.save(update_fields=("document_type",)) | ||||
|  | ||||
|     def get_queryset(self, request): | ||||
|         qs = super(DocumentTypeAdmin, self).get_queryset(request) | ||||
|         qs = qs.annotate(document_count=models.Count("documents")) | ||||
|   | ||||
| @@ -11,9 +11,7 @@ class DocumentsConfig(AppConfig): | ||||
|         from .signals import document_consumption_started | ||||
|         from .signals import document_consumption_finished | ||||
|         from .signals.handlers import ( | ||||
|             set_correspondent, | ||||
|             set_tags, | ||||
|             set_document_type, | ||||
|             classify_document, | ||||
|             run_pre_consume_script, | ||||
|             run_post_consume_script, | ||||
|             cleanup_document_deletion, | ||||
| @@ -22,9 +20,7 @@ class DocumentsConfig(AppConfig): | ||||
|  | ||||
|         document_consumption_started.connect(run_pre_consume_script) | ||||
|  | ||||
|         document_consumption_finished.connect(set_tags) | ||||
|         document_consumption_finished.connect(set_correspondent) | ||||
|         document_consumption_finished.connect(set_document_type) | ||||
|         document_consumption_finished.connect(classify_document) | ||||
|         document_consumption_finished.connect(set_log_entry) | ||||
|         document_consumption_finished.connect(run_post_consume_script) | ||||
|  | ||||
|   | ||||
							
								
								
									
										67
									
								
								src/documents/classifier.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										67
									
								
								src/documents/classifier.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,67 @@ | ||||
| import pickle | ||||
|  | ||||
| from documents.models import Correspondent, DocumentType, Tag | ||||
| from paperless import settings | ||||
|  | ||||
|  | ||||
| def preprocess_content(content): | ||||
|     content = content.lower() | ||||
|     content = content.strip() | ||||
|     content = content.replace("\n", " ") | ||||
|     content = content.replace("\r", " ") | ||||
|     while content.find("  ") > -1: | ||||
|         content = content.replace("  ", " ") | ||||
|     return content | ||||
|  | ||||
|  | ||||
| class DocumentClassifier(object): | ||||
|  | ||||
|     @staticmethod | ||||
|     def load_classifier(): | ||||
|         clf = DocumentClassifier() | ||||
|         clf.reload() | ||||
|         return clf | ||||
|  | ||||
|     def reload(self): | ||||
|         with open(settings.MODEL_FILE, "rb") as f: | ||||
|             self.data_vectorizer = pickle.load(f) | ||||
|             self.tags_binarizer = pickle.load(f) | ||||
|             self.correspondent_binarizer = pickle.load(f) | ||||
|             self.type_binarizer = pickle.load(f) | ||||
|  | ||||
|             self.tags_classifier = pickle.load(f) | ||||
|             self.correspondent_classifier = pickle.load(f) | ||||
|             self.type_classifier = pickle.load(f) | ||||
|  | ||||
|     def save_classifier(self): | ||||
|         with open(settings.MODEL_FILE, "wb") as f: | ||||
|             pickle.dump(self.data_vectorizer, f) | ||||
|  | ||||
|             pickle.dump(self.tags_binarizer, f) | ||||
|             pickle.dump(self.correspondent_binarizer, f) | ||||
|             pickle.dump(self.type_binarizer, f) | ||||
|  | ||||
|             pickle.dump(self.tags_classifier, f) | ||||
|             pickle.dump(self.correspondent_classifier, f) | ||||
|             pickle.dump(self.type_classifier, f) | ||||
|  | ||||
|     def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False): | ||||
|         X = self.data_vectorizer.transform([preprocess_content(document.content)]) | ||||
|  | ||||
|         if classify_correspondent: | ||||
|             y_correspondent = self.correspondent_classifier.predict(X) | ||||
|             correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] | ||||
|             print("Detected correspondent:", correspondent) | ||||
|             document.correspondent = Correspondent.objects.filter(name=correspondent).first() | ||||
|  | ||||
|         if classify_type: | ||||
|             y_type = self.type_classifier.predict(X) | ||||
|             type = self.type_binarizer.inverse_transform(y_type)[0] | ||||
|             print("Detected document type:", type) | ||||
|             document.type = DocumentType.objects.filter(name=type).first() | ||||
|  | ||||
|         if classify_tags: | ||||
|             y_tags = self.tags_classifier.predict(X) | ||||
|             tags = self.tags_binarizer.inverse_transform(y_tags)[0] | ||||
|             print("Detected tags:", tags) | ||||
|             document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags]) | ||||
| @@ -1,82 +0,0 @@ | ||||
| import sys | ||||
|  | ||||
| from django.core.management.base import BaseCommand | ||||
|  | ||||
| from documents.models import Correspondent, Document | ||||
|  | ||||
| from ...mixins import Renderable | ||||
|  | ||||
|  | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         Using the current set of correspondent rules, apply said rules to all | ||||
|         documents in the database, effectively allowing you to back-tag all | ||||
|         previously indexed documents with correspondent created (or modified) | ||||
|         after their initial import. | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     TOO_MANY_CONTINUE = ( | ||||
|         "Detected {} potential correspondents for {}, so we've opted for {}") | ||||
|     TOO_MANY_SKIP = ( | ||||
|         "Detected {} potential correspondents for {}, so we're skipping it") | ||||
|     CHANGE_MESSAGE = ( | ||||
|         'Document {}: "{}" was given the correspondent id {}: "{}"') | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         self.verbosity = 0 | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def add_arguments(self, parser): | ||||
|         parser.add_argument( | ||||
|             "--use-first", | ||||
|             default=False, | ||||
|             action="store_true", | ||||
|             help="By default this command won't try to assign a correspondent " | ||||
|                  "if more than one matches the document.  Use this flag if " | ||||
|                  "you'd rather it just pick the first one it finds." | ||||
|         ) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|  | ||||
|         self.verbosity = options["verbosity"] | ||||
|  | ||||
|         for document in Document.objects.filter(correspondent__isnull=True).exclude(tags__is_archived_tag=True): | ||||
|  | ||||
|             potential_correspondents = list( | ||||
|                 Correspondent.match_all(document.content)) | ||||
|  | ||||
|             if not potential_correspondents: | ||||
|                 continue | ||||
|  | ||||
|             potential_count = len(potential_correspondents) | ||||
|             correspondent = potential_correspondents[0] | ||||
|  | ||||
|             if potential_count > 1: | ||||
|                 if not options["use_first"]: | ||||
|                     print( | ||||
|                         self.TOO_MANY_SKIP.format(potential_count, document), | ||||
|                         file=sys.stderr | ||||
|                     ) | ||||
|                     continue | ||||
|                 print( | ||||
|                     self.TOO_MANY_CONTINUE.format( | ||||
|                         potential_count, | ||||
|                         document, | ||||
|                         correspondent | ||||
|                     ), | ||||
|                     file=sys.stderr | ||||
|                 ) | ||||
|  | ||||
|             document.correspondent = correspondent | ||||
|             document.save(update_fields=("correspondent",)) | ||||
|  | ||||
|             print( | ||||
|                 self.CHANGE_MESSAGE.format( | ||||
|                     document.pk, | ||||
|                     document.title, | ||||
|                     correspondent.pk, | ||||
|                     correspondent.name | ||||
|                 ), | ||||
|                 file=sys.stderr | ||||
|             ) | ||||
| @@ -1,100 +1,84 @@ | ||||
| import logging | ||||
| import os.path | ||||
| import pickle | ||||
|  | ||||
| from django.core.management.base import BaseCommand | ||||
| from sklearn.feature_extraction.text import CountVectorizer | ||||
| from sklearn.multiclass import OneVsRestClassifier | ||||
| from sklearn.naive_bayes import MultinomialNB | ||||
| from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder | ||||
|  | ||||
| from documents.models import Document | ||||
| from ...mixins import Renderable | ||||
|  | ||||
|  | ||||
| def preprocess_content(content): | ||||
|     content = content.lower() | ||||
|     content = content.strip() | ||||
|     content = content.replace("\n", " ") | ||||
|     content = content.replace("\r", " ") | ||||
|     while content.find("  ") > -1: | ||||
|         content = content.replace("  ", " ") | ||||
|     return content | ||||
|  | ||||
|  | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         There is no help. | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|         data = list() | ||||
|         labels_tags = list() | ||||
|         labels_correspondent = list() | ||||
|         labels_type = list() | ||||
|  | ||||
|         # Step 1: Extract and preprocess training data from the database. | ||||
|         logging.getLogger(__name__).info("Gathering data from database...") | ||||
|         for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|             data.append(preprocess_content(doc.content)) | ||||
|             labels_type.append(doc.document_type.name if doc.document_type is not None else "-") | ||||
|             labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") | ||||
|             tags = [tag.name for tag in doc.tags.all()] | ||||
|             labels_tags.append(tags) | ||||
|  | ||||
|         # Step 2: vectorize data | ||||
|         logging.getLogger(__name__).info("Vectorizing data...") | ||||
|         data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05) | ||||
|         data_vectorized = data_vectorizer.fit_transform(data) | ||||
|  | ||||
|         tags_binarizer = MultiLabelBinarizer() | ||||
|         labels_tags_vectorized = tags_binarizer.fit_transform(labels_tags) | ||||
|  | ||||
|         correspondent_binarizer = LabelEncoder() | ||||
|         labels_correspondent_vectorized = correspondent_binarizer.fit_transform(labels_correspondent) | ||||
|  | ||||
|         type_binarizer = LabelEncoder() | ||||
|         labels_type_vectorized = type_binarizer.fit_transform(labels_type) | ||||
|  | ||||
|         # Step 3: train the classifiers | ||||
|         if len(tags_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training tags classifier") | ||||
|             tags_classifier = OneVsRestClassifier(MultinomialNB()) | ||||
|             tags_classifier.fit(data_vectorized, labels_tags_vectorized) | ||||
|         else: | ||||
|             tags_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") | ||||
|  | ||||
|         if len(correspondent_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training correspondent classifier") | ||||
|             correspondent_classifier = MultinomialNB() | ||||
|             correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) | ||||
|         else: | ||||
|             correspondent_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") | ||||
|  | ||||
|         if len(type_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training document type classifier") | ||||
|             type_classifier = MultinomialNB() | ||||
|             type_classifier.fit(data_vectorized, labels_type_vectorized) | ||||
|         else: | ||||
|             type_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") | ||||
|  | ||||
|         models_root = os.path.abspath(os.path.join(os.path.dirname(__name__), "..", "models", "models.pickle")) | ||||
|         logging.getLogger(__name__).info("Saving models to " + models_root + "...") | ||||
|  | ||||
|         with open(models_root, "wb") as f: | ||||
|             pickle.dump(data_vectorizer, f) | ||||
|  | ||||
|             pickle.dump(tags_binarizer, f) | ||||
|             pickle.dump(correspondent_binarizer, f) | ||||
|             pickle.dump(type_binarizer, f) | ||||
|  | ||||
|             pickle.dump(tags_classifier, f) | ||||
|             pickle.dump(correspondent_classifier, f) | ||||
|             pickle.dump(type_classifier, f) | ||||
| import logging | ||||
| import os.path | ||||
| import pickle | ||||
|  | ||||
| from django.core.management.base import BaseCommand | ||||
| from sklearn.feature_extraction.text import CountVectorizer | ||||
| from sklearn.multiclass import OneVsRestClassifier | ||||
| from sklearn.naive_bayes import MultinomialNB | ||||
| from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder | ||||
|  | ||||
| from documents.classifier import preprocess_content, DocumentClassifier | ||||
| from documents.models import Document | ||||
| from paperless import settings | ||||
| from ...mixins import Renderable | ||||
|  | ||||
|  | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         There is no help. | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|         clf = DocumentClassifier() | ||||
|  | ||||
|         data = list() | ||||
|         labels_tags = list() | ||||
|         labels_correspondent = list() | ||||
|         labels_type = list() | ||||
|  | ||||
|         # Step 1: Extract and preprocess training data from the database. | ||||
|         logging.getLogger(__name__).info("Gathering data from database...") | ||||
|         for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|             data.append(preprocess_content(doc.content)) | ||||
|             labels_type.append(doc.document_type.name if doc.document_type is not None else "-") | ||||
|             labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") | ||||
|             tags = [tag.name for tag in doc.tags.all()] | ||||
|             labels_tags.append(tags) | ||||
|  | ||||
|         # Step 2: vectorize data | ||||
|         logging.getLogger(__name__).info("Vectorizing data...") | ||||
|         clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05) | ||||
|         data_vectorized = clf.data_vectorizer.fit_transform(data) | ||||
|  | ||||
|         clf.tags_binarizer = MultiLabelBinarizer() | ||||
|         labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags) | ||||
|  | ||||
|         clf.correspondent_binarizer = LabelEncoder() | ||||
|         labels_correspondent_vectorized = clf.correspondent_binarizer.fit_transform(labels_correspondent) | ||||
|  | ||||
|         clf.type_binarizer = LabelEncoder() | ||||
|         labels_type_vectorized = clf.type_binarizer.fit_transform(labels_type) | ||||
|  | ||||
|         # Step 3: train the classifiers | ||||
|         if len(clf.tags_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training tags classifier") | ||||
|             clf.tags_classifier = OneVsRestClassifier(MultinomialNB()) | ||||
|             clf.tags_classifier.fit(data_vectorized, labels_tags_vectorized) | ||||
|         else: | ||||
|             clf.tags_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") | ||||
|  | ||||
|         if len(clf.correspondent_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training correspondent classifier") | ||||
|             clf.correspondent_classifier = MultinomialNB() | ||||
|             clf.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) | ||||
|         else: | ||||
|             clf.correspondent_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") | ||||
|  | ||||
|         if len(clf.type_binarizer.classes_) > 0: | ||||
|             logging.getLogger(__name__).info("Training document type classifier") | ||||
|             clf.type_classifier = MultinomialNB() | ||||
|             clf.type_classifier.fit(data_vectorized, labels_type_vectorized) | ||||
|         else: | ||||
|             clf.type_classifier = None | ||||
|             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") | ||||
|  | ||||
|         logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...") | ||||
|  | ||||
|         clf.save_classifier() | ||||
| @@ -1,49 +1,40 @@ | ||||
| from django.core.management.base import BaseCommand | ||||
|  | ||||
| from documents.models import Document | ||||
| from ...mixins import Renderable | ||||
|  | ||||
|  | ||||
| def preprocess_content(content): | ||||
|     content = content.lower() | ||||
|     content = content.strip() | ||||
|     content = content.replace("\n", " ") | ||||
|     content = content.replace("\r", " ") | ||||
|     while content.find("  ") > -1: | ||||
|         content = content.replace("  ", " ") | ||||
|     return content | ||||
|  | ||||
|  | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         There is no help. | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|         with open("dataset_tags.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 labels = [] | ||||
|                 for tag in doc.tags.all(): | ||||
|                     labels.append(tag.name) | ||||
|                 f.write(",".join(labels)) | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
|  | ||||
|         with open("dataset_types.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 f.write(doc.document_type.name if doc.document_type is not None else "None") | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
|  | ||||
|         with open("dataset_correspondents.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 f.write(doc.correspondent.name if doc.correspondent is not None else "None") | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
| from django.core.management.base import BaseCommand | ||||
|  | ||||
| from documents.classifier import preprocess_content | ||||
| from documents.models import Document | ||||
| from ...mixins import Renderable | ||||
|  | ||||
|  | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         There is no help. | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|         with open("dataset_tags.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 labels = [] | ||||
|                 for tag in doc.tags.all(): | ||||
|                     labels.append(tag.name) | ||||
|                 f.write(",".join(labels)) | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
|  | ||||
|         with open("dataset_types.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 f.write(doc.document_type.name if doc.document_type is not None else "None") | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
|  | ||||
|         with open("dataset_correspondents.txt", "w") as f: | ||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||
|                 f.write(doc.correspondent.name if doc.correspondent is not None else "None") | ||||
|                 f.write(";") | ||||
|                 f.write(preprocess_content(doc.content)) | ||||
|                 f.write("\n") | ||||
|   | ||||
| @@ -1,5 +1,8 @@ | ||||
| import logging | ||||
|  | ||||
| from django.core.management.base import BaseCommand | ||||
|  | ||||
| from documents.classifier import DocumentClassifier | ||||
| from documents.models import Document, Tag | ||||
|  | ||||
| from ...mixins import Renderable | ||||
| @@ -8,25 +11,44 @@ from ...mixins import Renderable | ||||
| class Command(Renderable, BaseCommand): | ||||
|  | ||||
|     help = """ | ||||
|         Using the current set of tagging rules, apply said rules to all | ||||
|         documents in the database, effectively allowing you to back-tag all | ||||
|         previously indexed documents with tags created (or modified) after | ||||
|         their initial import. | ||||
|         There is no help. #TODO | ||||
|     """.replace("    ", "") | ||||
|  | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         self.verbosity = 0 | ||||
|         BaseCommand.__init__(self, *args, **kwargs) | ||||
|  | ||||
|     def add_arguments(self, parser): | ||||
|         parser.add_argument( | ||||
|             "-c", "--correspondent", | ||||
|             action="store_true" | ||||
|         ) | ||||
|         parser.add_argument( | ||||
|             "-T", "--tags", | ||||
|             action="store_true" | ||||
|         ) | ||||
|         parser.add_argument( | ||||
|             "-t", "--type", | ||||
|             action="store_true" | ||||
|         ) | ||||
|         parser.add_argument( | ||||
|             "-i", "--inbox-only", | ||||
|             action="store_true" | ||||
|         ) | ||||
|  | ||||
|     def handle(self, *args, **options): | ||||
|  | ||||
|         self.verbosity = options["verbosity"] | ||||
|  | ||||
|         for document in Document.objects.all().exclude(tags__is_archived_tag=True): | ||||
|         if options['inbox_only']: | ||||
|             documents = Document.objects.filter(tags__is_inbox_tag=True).distinct() | ||||
|         else: | ||||
|             documents = Document.objects.all().exclude(tags__is_archived_tag=True).distinct() | ||||
|  | ||||
|             tags = Tag.objects.exclude( | ||||
|                 pk__in=document.tags.values_list("pk", flat=True)) | ||||
|         logging.getLogger(__name__).info("Loading classifier") | ||||
|         clf = DocumentClassifier.load_classifier() | ||||
|  | ||||
|             for tag in Tag.match_all(document.content, tags): | ||||
|                 print('Tagging {} with "{}"'.format(document, tag)) | ||||
|                 document.tags.add(tag) | ||||
|  | ||||
|         for document in documents: | ||||
|             logging.getLogger(__name__).info("Processing document {}".format(document.title)) | ||||
|             clf.classify_document(document, classify_type=options['type'], classify_tags=options['tags'], classify_correspondent=options['correspondent']) | ||||
|   | ||||
| @@ -8,6 +8,7 @@ from django.contrib.auth.models import User | ||||
| from django.contrib.contenttypes.models import ContentType | ||||
| from django.utils import timezone | ||||
|  | ||||
| from documents.classifier import DocumentClassifier | ||||
| from ..models import Correspondent, Document, Tag, DocumentType | ||||
|  | ||||
|  | ||||
| @@ -15,79 +16,16 @@ def logger(message, group): | ||||
|     logging.getLogger(__name__).debug(message, extra={"group": group}) | ||||
|  | ||||
|  | ||||
| def set_correspondent(sender, document=None, logging_group=None, **kwargs): | ||||
|  | ||||
|     # No sense in assigning a correspondent when one is already set. | ||||
|     if document.correspondent: | ||||
|         return | ||||
|  | ||||
|     # No matching correspondents, so no need to continue | ||||
|     potential_correspondents = list(Correspondent.match_all(document.content)) | ||||
|     if not potential_correspondents: | ||||
|         return | ||||
|  | ||||
|     potential_count = len(potential_correspondents) | ||||
|     selected = potential_correspondents[0] | ||||
|     if potential_count > 1: | ||||
|         message = "Detected {} potential correspondents, so we've opted for {}" | ||||
|         logger( | ||||
|             message.format(potential_count, selected), | ||||
|             logging_group | ||||
|         ) | ||||
|  | ||||
|     logger( | ||||
|         'Assigning correspondent "{}" to "{}" '.format(selected, document), | ||||
|         logging_group | ||||
|     ) | ||||
|  | ||||
|     document.correspondent = selected | ||||
|     document.save(update_fields=("correspondent",)) | ||||
| classifier = None | ||||
|  | ||||
|  | ||||
| def set_document_type(sender, document=None, logging_group=None, **kwargs): | ||||
| def classify_document(sender, document=None, logging_group=None, **kwargs): | ||||
|     global classifier | ||||
|     if classifier is None: | ||||
|         classifier = DocumentClassifier.load_classifier() | ||||
|  | ||||
|     # No sense in assigning a correspondent when one is already set. | ||||
|     if document.document_type: | ||||
|         return | ||||
|     classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_type=True) | ||||
|  | ||||
|     # No matching document types, so no need to continue | ||||
|     potential_document_types = list(DocumentType.match_all(document.content)) | ||||
|     if not potential_document_types: | ||||
|         return | ||||
|  | ||||
|     potential_count = len(potential_document_types) | ||||
|     selected = potential_document_types[0] | ||||
|     if potential_count > 1: | ||||
|         message = "Detected {} potential document types, so we've opted for {}" | ||||
|         logger( | ||||
|             message.format(potential_count, selected), | ||||
|             logging_group | ||||
|         ) | ||||
|  | ||||
|     logger( | ||||
|         'Assigning document type "{}" to "{}" '.format(selected, document), | ||||
|         logging_group | ||||
|     ) | ||||
|  | ||||
|     document.document_type = selected | ||||
|     document.save(update_fields=("document_type",)) | ||||
|  | ||||
|  | ||||
| def set_tags(sender, document=None, logging_group=None, **kwargs): | ||||
|  | ||||
|     current_tags = set(document.tags.all()) | ||||
|     relevant_tags = (set(Tag.match_all(document.content)) | set(Tag.objects.filter(is_inbox_tag=True))) - current_tags | ||||
|  | ||||
|     if not relevant_tags: | ||||
|         return | ||||
|  | ||||
|     message = 'Tagging "{}" with "{}"' | ||||
|     logger( | ||||
|         message.format(document, ", ".join([t.slug for t in relevant_tags])), | ||||
|         logging_group | ||||
|     ) | ||||
|  | ||||
|     document.tags.add(*relevant_tags) | ||||
|  | ||||
|  | ||||
| def run_pre_consume_script(sender, filename, **kwargs): | ||||
|   | ||||
| @@ -187,6 +187,11 @@ STATIC_URL = os.getenv("PAPERLESS_STATIC_URL", "/static/") | ||||
| MEDIA_URL = os.getenv("PAPERLESS_MEDIA_URL", "/media/") | ||||
|  | ||||
|  | ||||
| # Document classification models location | ||||
| MODEL_FILE = os.getenv( | ||||
|     "PAPERLESS_STATICDIR", os.path.join(BASE_DIR, "..", "models", "model.pickle")) | ||||
|  | ||||
|  | ||||
| # Paperless-specific stuff | ||||
| # You shouldn't have to edit any of these values.  Rather, you can set these | ||||
| # values in /etc/paperless.conf instead. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Jonas Winkler
					Jonas Winkler