paperless-ngx/src/documents/management/commands/document_create_classifier.py

84 lines
3.5 KiB
Python
Executable File

import logging
import os.path
import pickle
from django.core.management.base import BaseCommand
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder
from documents.classifier import preprocess_content, DocumentClassifier
from documents.models import Document
from paperless import settings
from ...mixins import Renderable
class Command(Renderable, BaseCommand):
help = """
There is no help.
""".replace(" ", "")
def __init__(self, *args, **kwargs):
BaseCommand.__init__(self, *args, **kwargs)
def handle(self, *args, **options):
clf = DocumentClassifier()
data = list()
labels_tags = list()
labels_correspondent = list()
labels_type = list()
# Step 1: Extract and preprocess training data from the database.
logging.getLogger(__name__).info("Gathering data from database...")
for doc in Document.objects.exclude(tags__is_inbox_tag=True):
data.append(preprocess_content(doc.content))
labels_type.append(doc.document_type.name if doc.document_type is not None else "-")
labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-")
tags = [tag.name for tag in doc.tags.all()]
labels_tags.append(tags)
# Step 2: vectorize data
logging.getLogger(__name__).info("Vectorizing data...")
clf.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05)
data_vectorized = clf.data_vectorizer.fit_transform(data)
clf.tags_binarizer = MultiLabelBinarizer()
labels_tags_vectorized = clf.tags_binarizer.fit_transform(labels_tags)
clf.correspondent_binarizer = LabelEncoder()
labels_correspondent_vectorized = clf.correspondent_binarizer.fit_transform(labels_correspondent)
clf.type_binarizer = LabelEncoder()
labels_type_vectorized = clf.type_binarizer.fit_transform(labels_type)
# Step 3: train the classifiers
if len(clf.tags_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training tags classifier")
clf.tags_classifier = OneVsRestClassifier(MultinomialNB())
clf.tags_classifier.fit(data_vectorized, labels_tags_vectorized)
else:
clf.tags_classifier = None
logging.getLogger(__name__).info("There are no tags. Not training tags classifier.")
if len(clf.correspondent_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training correspondent classifier")
clf.correspondent_classifier = MultinomialNB()
clf.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized)
else:
clf.correspondent_classifier = None
logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.")
if len(clf.type_binarizer.classes_) > 0:
logging.getLogger(__name__).info("Training document type classifier")
clf.type_classifier = MultinomialNB()
clf.type_classifier.fit(data_vectorized, labels_type_vectorized)
else:
clf.type_classifier = None
logging.getLogger(__name__).info("There are no document types. Not training document type classifier.")
logging.getLogger(__name__).info("Saving models to " + settings.MODEL_FILE + "...")
clf.save_classifier()